login
A304910
Coordination sequence for the inner vertex introduced in the first inflation-deflation step in a Pinwheel tiling.
2
1, 8, 26, 38, 44, 68, 92, 100, 138, 122, 182, 192, 198, 224, 204, 236, 256, 276, 272, 276, 328, 372, 384, 396, 352, 436, 496, 428, 510, 490, 500, 552, 572, 580, 602, 662, 666, 672, 678, 704, 692, 724, 744, 656, 704, 908, 880, 892, 984, 794, 1014, 944, 812
OFFSET
0,2
COMMENTS
The first inflation-deflation step leads to the following configuration (where O marks the reference vertex for this sequence):
|
||||
|||||||
||||||||||
|||||||||--\\
||||||||----\\\\
|||||||------\\\\\\
|||||||-------\\\\\\\\
||||||---------\\\\\\\\\\
|||||O----------\\\\\\\\\\\\
||||////---------\\\\\\\\\\....
||||///////--------\\\\\\\........
|||///////////------\\\\\............
||///////////////----\\\\...............
|///////////////////--\\...................
|//////////////////////.......................
After k > 0 inflation-deflation steps, we can compute a finite coordination sequence c_k (until we reach the edge of the tiling after k steps). It appears that for i and j such that 0 < i < j, c_i is a prefix of c_j; this sequence is the limiting sequence of the { c_i, i > 0 } family.
PROG
(PARI) See Links section.
CROSSREFS
Cf. A304913 (partial sums).
Sequence in context: A063560 A265104 A328205 * A271989 A069952 A031085
KEYWORD
nonn
AUTHOR
Rémy Sigrist, May 20 2018
STATUS
approved