OFFSET
1,1
COMMENTS
In the following, let "gap" and "gap number" be as defined in A265100, and let C(m) denote the m-th Catalan number (A000108).
Conjecture 1: The sequence contains all possible gap numbers.
Conjecture 2: For any gap G, the order |G| of G is the constant |G| = 6.
Conjecture 3: If g is a gap number, then 3*g + 2 is a gap number.
Conjecture 4: If C(m) =!= 0 (mod 3), then C(3*m+1) =!= 0 (mod 3) (=!= means "not congruent") or, what is the same thing, if m lies in a gap, then 3*m + 1 lies in a gap.
FORMULA
MATHEMATICA
a005836[1] := 0; a005836[n_] := If[OddQ[n], 3*a005836[Floor[(n + 1)/2]], a005836[n - 1] + 1]; a265100[n_] := 9*a005836[n] + 5; a265104[n_] := a265100[n+1] - 6; Table[a265104[n], {n, 46}]
(* Or: *)
a007814[x_] := IntegerExponent[x, 2]; a003602[x_] := (1 + x/2^a007814[x])/2; a005836[1] := 0; a005836[n_] := If[OddQ[n], 3*a005836[Floor[(n + 1)/2]], a005836[n - 1] + 1]; a265100[n_] := 9*a005836[n] + 5; a265104[n_] := (3^(a007814[n] + 2) - 3)/2 + a265100[2^(a007814[n])*(2*a003602[n] - 1)]; Table[a265104[n], {n, 46}]
CROSSREFS
KEYWORD
nonn
AUTHOR
L. Edson Jeffery, Dec 01 2015
STATUS
approved