The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180875 Sum_{j>=1} j^n*2^j/binomial(2*j,j) = r_n*Pi/2 + s_n with integer r_n and s_n; sequence gives s_n. 9
 1, 3, 11, 55, 355, 2807, 26259, 283623, 3473315, 47552791, 719718067, 11932268231, 215053088835, 4186305575415, 87534887434835, 1956680617267879, 46561960552921315, 1175204650272267479, 31357650670190565363, 881958890078887314567, 26078499305918584929155, 808742391638178302137783 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Lehmer's coefficients stemming from an inverse binomial coefficient series. Left-hand side (portion of integer-only values not multiplied by Pi or Pi/2) on the table of Dyson et al. In the references, the infinite series is S_n(2) = A014307(n+1)*Pi/2 + A180875(n) for n >= 1 (and S_0(2) is not defined). - Petros Hadjicostas, May 14 2020 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..423 F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011; see Table IV on p. 14. F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130; see Table 2. D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457. FORMULA a(0)=1; if n>=1, then a(n) = a(n-1) + 1 + Sum_{m=1..n} binomial(n,m)*a(n-m). - Detlef Meya, Jan 22 2018 E.g.f.: 2*(arcsin(exp(x/2)/sqrt(2)) - Pi/4) * sqrt(exp(x)/(2-exp(x))^3) + exp(x)/(2-exp(x)). - Seiichi Manyama, Oct 21 2019 a(n) ~ Pi * n^(n+1) / (sqrt(2) * exp(n) * (log(2))^(n + 3/2)). - Vaclav Kotesovec, Oct 22 2019 E.g.f.: d/dx (f(x) * Integral f(x) dx), where f(x) = sqrt(exp(x)/(2-exp(x))), cf. A014307. - Seiichi Manyama, Oct 22 2019 MAPLE f:=n->sum(j^n*(j!)^2*2^j/(2*j)!, j=1..infinity); [seq(f(n), n=0..5)]; # which gives # [1+1/2*Pi, 3+Pi, 11+7/2*Pi, 55+35/2*Pi, 355+113*Pi, 2807+1787/2*Pi] MATHEMATICA Table[Expand[FunctionExpand[FullSimplify[Sum[j^n*2^j/Binomial[2*j, j], {j, 1, Infinity}]]]][[1]], {n, 0, 20}] (* Vaclav Kotesovec, May 14 2020 *) PROG (PARI) N=20; x='x+O('x^N); f=sqrt(exp(x)/(2-exp(x))); Vec(serlaplace(deriv(f*intformal(f)))) \\ Seiichi Manyama, Oct 22 2019 CROSSREFS The values of r_n give A014307. Cf. A000629, A129063. Sequence in context: A001776 A261001 A207556 * A136104 A174627 A302147 Adjacent sequences:  A180872 A180873 A180874 * A180876 A180877 A180878 KEYWORD nonn,easy AUTHOR Jonathan Vos Post, Sep 23 2010 EXTENSIONS Attribution corrected by M. Lawrence Glasser, Sep 25 2010 Provided a better definition following a suggestion from Herb Conn. - N. J. A. Sloane, Feb 08 2011 Missing a(15) inserted by Seiichi Manyama, Oct 20 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 26 02:44 EDT 2020. Contains 338027 sequences. (Running on oeis4.)