login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047306
Numbers that are congruent to {0, 2, 3, 4, 5, 6} mod 7.
2
0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77
OFFSET
1,2
COMMENTS
Complement of A016993. - Michel Marcus, Sep 10 2015
FORMULA
G.f.: x^2*(2+x+x^2+x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Sep 10 2015: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = n + floor((n-2)/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n-27+3*cos(n*Pi)-12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-3, a(6k-3) = 7k-4, a(6k-4) = 7k-5, a(6k-5) = 7k-7. (End)
MAPLE
A047306:=n->n+floor((n-2)/6): seq(A047306(n), n=1..100); # Wesley Ivan Hurt, Sep 10 2015
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 3, 4, 5, 6}, Mod[#, 7]] &] (* Vincenzo Librandi, Oct 22 2014 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 2, 3, 4, 5, 6, 7}, 70] (* Harvey P. Dale, May 28 2018 *)
PROG
(PARI) concat(0, Vec(x^2*(2+x+x^2+x^3+x^4+x^5)/((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2) + O(x^30))) \\ Michel Marcus, Oct 22 2014
(Magma) [n: n in [0..100] | n mod 7 in [0] cat [2..6]]; // Vincenzo Librandi, Oct 22 2014
CROSSREFS
Cf. A016993.
Sequence in context: A091249 A154799 A020660 * A332108 A316228 A353935
KEYWORD
nonn,easy
EXTENSIONS
More terms from Michel Marcus, Oct 22 2014
STATUS
approved