login
A020660
Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 8.
28
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 59, 60, 61, 62, 63, 64, 65, 67, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 81, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96, 97
OFFSET
1,2
LINKS
MAPLE
Noap:= proc(N, m)
# N terms of earliest increasing seq with no m-term arithmetic progression
local A, forbid, n, c, ds, j;
A:= Vector(N):
A[1..m-1]:= <($1..m-1)>:
forbid:= {m}:
for n from m to N do
c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
A[n]:= c;
ds:= convert(map(t -> c-t, A[m-2..n-1]), set);
for j from m-2 to 2 by -1 do
ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]), set);
if ds = {} then break fi;
od;
forbid:= select(`>`, forbid, c) union map(`+`, ds, c);
od:
convert(A, list)
end proc:
Noap(100, 8); # Robert Israel, Jan 04 2016
CROSSREFS
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
Sequence in context: A023750 A091249 A154799 * A047306 A332108 A316228
KEYWORD
nonn
STATUS
approved