login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004001 Hofstadter-Conway $10000 sequence: a(n) = a(a(n-1))+a(n-a(n-1)) with a(1) = a(2) = 1.
(Formerly M0276)
119
1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 10, 11, 12, 12, 13, 14, 14, 15, 15, 15, 16, 16, 16, 16, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 26, 27, 27, 27, 28, 29, 29, 30, 30, 30, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 33, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n)-a(n-1)=0 or 1 (see the D. Newman reference). - Emeric Deutsch, Jun 06 2005

a(A188163(n)) = n and a(m) < n for m < A188163(n). - Reinhard Zumkeller, Jun 03 2011

REFERENCES

J. Arkin, D. C. Arney, L. S. Dewald and W. E. Ebel, Jr., Families of recursive sequences, J. Rec. Math., 22 (No. 22, 1990), 85-94.

B. W. Conolly, Meta-Fibonacci sequences, in S. Vajda, editor, "Fibonacci and Lucas Numbers and the Golden Section", Halstead Press, NY, 1989, pp. 127-138.

R. K. Guy, Unsolved Problems Number Theory, Sect. E31.

D. R. Hofstadter, personal communication.

C. A. Pickover, Wonders of Numbers, "Cards,Frogs and Fractal sequences" Chapter 96 pp. 217-221 Oxford Univ.Press NY 2000.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Wiley, 1989, see p. 129.

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

S. W. Golomb, Discrete chaos: sequences satisfying "strange" recursions, unpublished manuscript, circa 1990 [cached copy, with permission (annotated)]

B. Balamohan, A. Kuznetsov and S. Tanny, On the behavior of a variant of Hofstadter's Q-sequence, J. Integer Sequences, Vol. 10 (2007), #07.7.1.

Nathaniel D. Emerson, A Family of Meta-Fibonacci Sequences Defined by Variable-Order Recursions, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.8.

J. Grytczuk, Another variation on Conway's recursive sequence, Discr. Math. 282 (2004), 149-161.

Nick Hobson, Python program for this sequence

D. R. Hofstadter, Plot of 100000 terms of a(n)-1/2

D. R. Hofstadter, Analogies and Sequences: Intertwined Patterns of Integers and Patterns of Thought Processes, Lecture in DIMACS Conference on Challenges of Identifying Integer Sequences, Rutgers University, October 10 2014; Part 1, Part 2.

D. Kleitman, Solution to Problem E3274, Amer. Math. Monthly, 98 (1991), 958-959.

T. Kubo and R. Vakil, On Conway's recursive sequence, Discr. Math. 152 (1996), 225-252.

C. L. Mallows, Conway's challenge sequence, Amer. Math. Monthly, 98 (1991), 5-20.

D. Newman, Problem E3274, Amer. Math. Monthly, 95 (1988), 555.

John A. Pelesko, Generalizing the Conway-Hofstadter $10,000 Sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.5.

K. Pinn, A chaotic cousin of Conway's recursive sequence, Experimental Mathematics, 9:1 (2000), 55-65.

N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).

Eric Weisstein's World of Mathematics, Hofstadter-Conway 10000-Dollar Sequence.

Eric Weisstein's World of Mathematics, Newman-Conway Sequence

Wikipedia, Hofstadter sequence

Index entries for Hofstadter-type sequences

FORMULA

lim n ->infinity a(n)/n = 1/2 and as special cases, if n>0, a(2^n-i) = 2^(n-1) for 0<=i<=n-1; a(2^n-1)=2^(n-1)-1; a(2^n+1)=2^(n-1)+1. - Benoit Cloitre, Aug 04 2002

EXAMPLE

If n=4 2^4=16, a(16-i)=2^(4-1)=8 for 0<=i<=4-1=3, hence a(16)=a(15)=a(14)=a(13)=8.

MAPLE

A004001 := proc(n) option remember; if n<=2 then 1 else procname(procname(n-1)) +procname(n-procname(n-1)); fi; end;

MATHEMATICA

a[1] = 1; a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; Table[ a[n], {n, 1, 75}] (* Robert G. Wilson v *)

PROG

(Haskell)

a004001 n = a004001_list !! (n-1)

a004001_list = 1 : 1 : h 3 1  {- memoization -}

  where h n x = x' : h (n + 1) x'

          where x' = a004001 x + a004001 (n - x)

-- Reinhard Zumkeller, Jun 03 2011

(PARI) a=vector(100); a[1]=a[2]=1; for(n=3, #a, a[n]=a[a[n-1]]+a[n-a[n-1]]); a \\ Charles R Greathouse IV, Jun 10 2011

(Scheme)

;; An implementation of memoization-macro definec can be found for example from: http://oeis.org/wiki/Memoization

(definec (A004001 n) (if (<= n 2) 1 (+ (A004001 (A004001 (- n 1))) (A004001 (- n (A004001 (- n 1)))))))

;; Antti Karttunen, Oct 22 2014

CROSSREFS

Cf. A005229, A005185, A080677, A088359, A087686, A093879 (first differences).

Cf. A004074 (A249071), A005350, A005707, A093878. Different from A086841. Run lengths give A051135.

Sequence in context: A239105 A218446 A102548 * A086841 A076502 A076897

Adjacent sequences:  A003998 A003999 A004000 * A004002 A004003 A004004

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 20 17:42 EST 2014. Contains 249753 sequences.