

A093878


a(1)=a(2)=1; for n >=3, a(n) = a(a(a(n1))) + a(na(a(n1))).


10



1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 8, 9, 10, 11, 12, 12, 12, 13, 13, 14, 15, 16, 16, 17, 18, 19, 20, 20, 20, 20, 21, 21, 22, 23, 24, 25, 26, 27, 27, 28, 28, 28, 29, 30, 31, 32, 33, 33, 33, 33, 33, 34, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42, 43, 44, 45, 46, 46, 47, 47, 47, 48, 48
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

For n>1: a(n)<n*(phi1) iff n is in A001519 where phi is the golden ratio = (1+sqrt(5))/2  Benoit Cloitre, May 27 2004


LINKS

Table of n, a(n) for n=1..74.
J. Grytczuk, Another variation on Conway's recursive sequence, Discr. Math. 282 (2004), 149161.
Abraham Isgur, Mustazee Rahman, On variants of Conway and Conolly's MetaFibonacci recursions, arXiv:1407.0425 [math.CO], 2014.


FORMULA

a(A001519(n)) = floor((phi1)*A001519(n)); a(A000045(n)) = A000045(n1); liminf a(n)/n = phi1; limsup a(n)/n = ?  Benoit Cloitre, May 27 2004


MATHEMATICA

a[1] = a[2] = 1; a[n_] := a[n] = a[a[a[n  1]]] + a[n  a[a[n  1]]]; Table[ a[n], {n, 75}] (* Robert G. Wilson v, May 27 2004 *)


PROG

(PARI) {m=75; v=vector(m, j, 1); for(n=3, m, a=v[v[v[n1]]]+v[nv[v[n1]]]; v[n]=a); for(j=1, m, print1(v[j], ", "))} \\ Klaus Brockhaus, May 27 2004


CROSSREFS

Sequence in context: A278617 A194640 A189726 * A317686 A156689 A168052
Adjacent sequences: A093875 A093876 A093877 * A093879 A093880 A093881


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, May 27 2004


EXTENSIONS

More terms from Benoit Cloitre, Robert G. Wilson v and Klaus Brockhaus, May 27 2004


STATUS

approved



