This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051135 a(n) = number of times n appears in the Hofstadter-Conway \$10000 sequence A004001. 15
 2, 2, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 3, 5, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 7, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If the initial 2 is changed to a 1, the resulting sequence (A265332) has the property that if all 1's are deleted, the remaining terms are the sequence incremented. - Franklin T. Adams-Watters, Oct 05 2006 a(A088359(n)) = 1 and a(A087686(n)) > 1; first differences of A188163. - Reinhard Zumkeller, Jun 03 2011 Start: a(k)=1 for k = 3, 5, 6, 9, 10, 11, 13, 17, 18, 19, 20, 22, 23, 25, 28, ..., ; (A088359) a(k)=2 for k = 1, 2, 7, 12, 14, 21, 24, 26, 29, 38, 42, 45, 47, 51, 53, ..., ; (1 followed by A266109) a(k)=3 for k = 4, 15, 27, 30, 48, 54, 57, 61, 86, 96, 102, 105, 112, ..., ; (A267103) a(k)=4 for k = 8, 31, 58, 62, 106, 116, 120, 125, 192, 212, 222, 226, ..., ; a(k)=5 for k = 16, 63, 121, 126, 227, 242, 247, 253, 419, 454, 469, ..., ; a(k)=6 for k = 32, 127, 248, 254, 475, 496, 502, 509, 894, 950, 971, ..., ; a(k)=7 for k = 64, 255, 503, 510, 978, 1006, 1013, 1021, 1872, 1956, ..., ; a(k)=8 for k = 128, 511, 1014, 1022, 1992, 2028, 2036, 2045, 3864, ..., ; a(k)=9 for k = 256, 1023, 2037, 2046, 4029, 4074, 4083, 4093, 7893, ..., ; a(k)=10 for k = 512, 2047, 4084, 4094, 8113, 8168, 8178, 8189, ..., ; etc. - Robert G. Wilson v, Jun 07 2011 Compare above to array A265903. - Antti Karttunen, Jan 18 2016 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 T. Kubo and R. Vakil, On Conway's recursive sequence, Discr. Math. 152 (1996), 225-252. Wikipedia, Hofstadter sequence Eric Weisstein's World of Mathematics, Hofstadter-Conway \$10,000 Sequence. FORMULA From Antti Karttunen, Jan 18 2016: (Start) a(n) = A188163(n+1) - A188163(n). [after Reinhard Zumkeller's Jun 03 2011 comment above] Other identities: a(n) = 1 if and only if A093879(n-1) = 1. [See A188163 for a reason.] (End) MAPLE a[1]:=1: a[2]:=1: for n from 3 to 300 do a[n]:=a[a[n-1]]+a[n-a[n-1]] od: A:=[seq(a[n], n=1..300)]:for j from 1 to A[nops(A)-1] do c[j]:=0: for n from 1 to 300 do if A[n]=j then c[j]:=c[j]+1 else fi od: od: seq(c[j], j=1..A[nops(A)-1]); # Emeric Deutsch, Jun 06 2006 MATHEMATICA a[1] = 1; a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; t = Array[a, 250]; Take[ Transpose[ Tally[t]][[2]], 105] (* Robert G. Wilson v, Jun 07 2011 *) PROG (Haskell) import Data.List (group) a051135 n = a051135_list !! (n-1) a051135_list = map length \$ group a004001_list -- Reinhard Zumkeller, Jun 03 2011 (Scheme) (define (A051135 n) (- (A188163 (+ 1 n)) (A188163 n))) ;; Antti Karttunen, Jan 18 2016 CROSSREFS Cf. A004001, A087686, A093879, A188163, A266109, A267103 and array A265903. Cf. A088359 (positions of ones). Cf. A265332 (essentially the same sequence, but with a(1) = 1 instead of 2). Sequence in context: A116685 A268190 A241150 * A260258 A283196 A238882 Adjacent sequences:  A051132 A051133 A051134 * A051136 A051137 A051138 KEYWORD easy,nonn,nice AUTHOR Robert Lozyniak (11(AT)onna.com) EXTENSIONS More terms from Jud McCranie Added links (in parentheses) to recently submitted related sequences - Antti Karttunen, Jan 18 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.