OFFSET
1,3
COMMENTS
LINKS
Michel Lagneau, Table of n, a(n) for n = 1..5000
EXAMPLE
T(13,k) = [7,6,2] for k = 1,2,3 because 13^2+1 = 2*5*17 =>
The number of occurrences of the prime divisor 2 is 7: 1^2+1=2, 3^2+1=2*5, 5^2+1=2*13, 7^2+1=2*5^2, 9^2+1=2*41, 11^2+1=2*61 and 13^2+1=2*5*17;
The number of occurrences of the prime divisor 5 is 6: 2^2+1=5, 3^2+1=2*5, 7^2+1=2*5^2, 8^2+1=5*13, 12^2+1=5*29;
The number of occurrences of the prime divisor 17 is 2: 4^2+1=17 and 13^2+1=2*5*17.
The array begins:
[1]
[1]
[2,2]
[1]
[3,1]
[1]
[4,3]
[4,2]
[5,2]
[1]
...
MAPLE
with(numtheory):lst:={2}:nn:=1000:T:=array(1..270, [0$270]):
for j from 1 to nn do:
p:=4*j+1:
if isprime(p)
then
lst:=lst union {p}:
fi:
od:
nn0:=nops(lst):
for n from 1 to 60 do:
q:=factorset(n^2+1):n0:=nops(q):
for k from 1 to n0 do:
for m from 1 to 270 do:
if q[k]=lst[m] then T[m]:=T[m]+1:printf(`%d, `, T[m]):
fi:
od:
od:
od:
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Michel Lagneau, Jul 21 2015
STATUS
approved