login
A279287
a(n) = numerator of (phi(n)/tau(n)).
4
1, 1, 1, 2, 2, 1, 3, 1, 2, 1, 5, 2, 6, 3, 2, 8, 8, 1, 9, 4, 3, 5, 11, 1, 20, 3, 9, 2, 14, 1, 15, 8, 5, 4, 6, 4, 18, 9, 6, 2, 20, 3, 21, 10, 4, 11, 23, 8, 14, 10, 8, 4, 26, 9, 10, 3, 9, 7, 29, 4, 30, 15, 6, 32, 12, 5, 33, 16, 11, 3, 35, 2, 36, 9, 20, 6, 15, 3
OFFSET
1,4
COMMENTS
a(n) = numerator of (A000010(n)/A000005(n)).
See A279288 (denominator of (phi(n)/tau(n))) and A063070 (phi(n)-tau(n)).
a(n) = 1 and A279288(n) = 1 for numbers n in A020488; a(n) > A279288(n) for numbers n in A279289.
LINKS
EXAMPLE
For n = 6: phi(6)/tau(6) = 2/4 = 1/2; a(6) = 1.
MAPLE
with(numtheory): A279287:=n->numer(phi(n)/sigma(n)): seq(A279287(n), n=1..150); # Wesley Ivan Hurt, Dec 11 2016
MATHEMATICA
Table[Numerator[EulerPhi[n]/DivisorSigma[0, n]], {n, 78}] (* Michael De Vlieger, Dec 09 2016 *)
PROG
(Magma) [Numerator(EulerPhi(n)/NumberOfDivisors(n)): n in[1..1000]]
(PARI) a(n) = numerator(eulerphi(n)/numdiv(n)) \\ Felix Fröhlich, Dec 09 2016
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Dec 09 2016
STATUS
approved