login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002312 Arc-cotangent reducible numbers or non-Størmer numbers: largest prime factor of n^2 + 1 is less than 2n.
(Formerly M2613 N1033)
8
3, 7, 8, 13, 17, 18, 21, 30, 31, 32, 38, 41, 43, 46, 47, 50, 55, 57, 68, 70, 72, 73, 75, 76, 83, 91, 93, 98, 99, 100, 105, 111, 112, 117, 119, 122, 123, 128, 129, 132, 133, 142, 144, 155, 157, 162, 172, 173, 174, 177, 182, 183, 185, 187, 189, 191, 192, 193, 200 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also numbers such that n^2 + 1 has no primitive divisor, hence (by Everest & Harman, Theorem 1.4) 2.138n < a(n) < 10.6n for large enough n. They conjecture that a(n) ~ cn where c = 1/(1 - log 2) = 3.258.... - Charles R Greathouse IV, Nov 15 2014

REFERENCES

Graham Everest and Glyn Harman, On primitive divisors of n^2 + b, in Number Theory and Polynomials (James McKee and Chris Smyth, ed.), London Mathematical Society 2008.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

J. Todd, Table of Arctangents. National Bureau of Standards, Washington, DC, 1951, p. 94.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Graham Everest and Glyn Harman, On primitive divisors of n^2 + b, arXiv:math/0701234 [math.NT], 2007.

E. Kowalski, On the "reducibility" of arctangents of integers, Amer. Math. Monthly, Vol. 111, No. 4 (Apr. 2004), 351-354.

J. Todd, A problem on arc tangent relations, Amer. Math. Monthly, 56 (1949), 517-528.

MATHEMATICA

lst={}; Do[n=m^2+1; p=FactorInteger[n][[ -1, 1]]; If[p<2m, AppendTo[lst, m]], {m, 200}]; lst (* T. D. Noe, Apr 09 2004 *)

Select[Range[200], FactorInteger[#^2+1][[-1, 1]]<2#&] (* Harvey P. Dale, Dec 07 2015 *)

PROG

(PARI) is(n)=my(f=factor(n^2+1)[, 1]); f[#f]<2*n \\ Charles R Greathouse IV, Nov 14 2014

(Haskell)

a002312 n = a002312_list !! (n-1)

a002312_list = filter (\x -> 2 * x > a006530 (x ^ 2 + 1)) [1..]

-- Reinhard Zumkeller, Jun 12 2015

CROSSREFS

Cf. A005528.

Cf. A006530, A071931 (subsequence).

Sequence in context: A244592 A010342 A108873 * A252496 A279517 A106474

Adjacent sequences:  A002309 A002310 A002311 * A002313 A002314 A002315

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Description and initial term modified Jan 15 1996.

More terms from Jason Earls, Jun 14 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 00:56 EST 2019. Contains 319365 sequences. (Running on oeis4.)