login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002668 Continued cotangent for e.
(Formerly M1900 N0748)
12
2, 8, 75, 8949, 119646723, 15849841722437093, 708657580163382065836292133774995, 529026553215766321676623343348414600292754204772300344704877695232 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..11

D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340. [Annotated scanned copy]

Eric Weisstein's World of Mathematics, Lehmer Cotangent Expansion

MATHEMATICA

b[1] = E; b[n_] := b[n] = (b[n-1]*Floor[b[n-1]]+1) / (b[n-1]-Floor[b[n-1]]); a[n_] := Floor[b[n]]; Table[a[n], {n, 1, 8}] (* Jean-Fran├žois Alcover, Jan 17 2012, after PARI *)

PROG

(PARI) { default(realprecision, 10000); bn=vector(11); bn[1]=exp(1); for(n=2, 11, bn[n]=(bn[n-1]*floor(bn[n-1]) + 1)/(bn[n-1] - floor(bn[n-1]))); for (n=1, 11, write("b002668.txt", n, " ", floor(bn[n]))); } \\ Harry J. Smith, May 04 2009

CROSSREFS

Sequence in context: A295373 A132039 A204552 * A193205 A303943 A295345

Adjacent sequences:  A002665 A002666 A002667 * A002669 A002670 A002671

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Jeffrey Shallit

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 00:52 EDT 2019. Contains 328315 sequences. (Running on oeis4.)