OFFSET
0,4
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..12
D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340. [Annotated scanned copy]
G. Xiao, Contfrac
FORMULA
With a different offset: a(0)=1, a(1)=1, a(n+1)=(b(n)+b(n-1)+1)*a(n-1), n >= 1, b()=A002065, with b(0)=0, b(1)=1, b(2)=3, ...
EXAMPLE
0.592632718201636... = 0 + 1/(1 + 1/(1 + 1/(2 + 1/(5 + ...)))). - Harry J. Smith, May 14 2009
MATHEMATICA
digits = 1200; c[0] = 0; c[n_] := c[n] = c[n-1]^2 + c[n-1] + 1; LC[m_] := LC[m] = Cot[Sum[(-1)^k*ArcCot[c[k]], {k, 0, m}]] // N[#, digits+10]&; LC[10]; LC[m = 20]; While[Abs[LC[m] - LC[m-10]] > 10^-digits, m = m+10]; ContinuedFraction[LC[m]] (* Jean-François Alcover, Oct 08 2013 *)
PROG
(PARI) default(realprecision, 2000); b=0.;
Lehmers=1/tan(suminf(k=1, b=b^2+b+1; (-1)^k*atan(1/b))+Pi/2);
x=contfrac(Lehmers);
for (n=1, 13, write("b002665.txt", n-1, " ", x[n])) \\ Harry J. Smith, May 14 2009; edited by Charles R Greathouse IV, Jan 21 2016
CROSSREFS
KEYWORD
nonn,cofr,nice,easy
AUTHOR
EXTENSIONS
More terms from Jeffrey Shallit
First two terms inserted by Harry J. Smith, May 14 2009
STATUS
approved