login
A002665
Continued fraction expansion of Lehmer's constant.
(Formerly M1549 N0605)
7
0, 1, 1, 2, 5, 34, 985, 1151138, 1116929202845, 1480063770341062927127746, 1846425204836010506550936273411258268076151412465
OFFSET
0,4
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340. [Annotated scanned copy]
G. Xiao, Contfrac
FORMULA
With a different offset: a(0)=1, a(1)=1, a(n+1)=(b(n)+b(n-1)+1)*a(n-1), n >= 1, b()=A002065, with b(0)=0, b(1)=1, b(2)=3, ...
EXAMPLE
0.592632718201636... = 0 + 1/(1 + 1/(1 + 1/(2 + 1/(5 + ...)))). - Harry J. Smith, May 14 2009
MATHEMATICA
digits = 1200; c[0] = 0; c[n_] := c[n] = c[n-1]^2 + c[n-1] + 1; LC[m_] := LC[m] = Cot[Sum[(-1)^k*ArcCot[c[k]], {k, 0, m}]] // N[#, digits+10]&; LC[10]; LC[m = 20]; While[Abs[LC[m] - LC[m-10]] > 10^-digits, m = m+10]; ContinuedFraction[LC[m]] (* Jean-François Alcover, Oct 08 2013 *)
PROG
(PARI) default(realprecision, 2000); b=0.;
Lehmers=1/tan(suminf(k=1, b=b^2+b+1; (-1)^k*atan(1/b))+Pi/2);
x=contfrac(Lehmers);
for (n=1, 13, write("b002665.txt", n-1, " ", x[n])) \\ Harry J. Smith, May 14 2009; edited by Charles R Greathouse IV, Jan 21 2016
CROSSREFS
Cf. A030125 (decimal expansion).
Starting with n=2, a(n)/a(n-2) are in A096407.
Sequence in context: A206830 A277436 A358688 * A192222 A326946 A241586
KEYWORD
nonn,cofr,nice,easy
EXTENSIONS
More terms from Jeffrey Shallit
First two terms inserted by Harry J. Smith, May 14 2009
STATUS
approved