login
A105600
Assume the conjectured terms of A105594 are the correct beginnings of the trajectories described in A003508. a(n) is a record length of b(n) iterations to arrive at the collected trajectories. This sequence cites the a(n)'s.
2
1, 5, 9, 16, 25, 43, 91, 105, 427, 463, 484, 4085, 4306, 4413, 5583, 6273, 10172, 18105, 24946, 31686, 31886
OFFSET
0,2
COMMENTS
The trajectory in A003508, etc., is defined as a(1)=n, for n>1, a(n) = a(n-1) + 1 + sum of distinct prime factors of a(n-1) that are < a(n-1).
MATHEMATICA
a[1] = 1; a[n_] := a[n] = a[n - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[ a[n - 1]]], # < a[n - 1] &]; t = Table[ a[n], {n, 1500}]; f[n_] := Module[{b, k = 1}, b[1] = n; b[m_] := b[m] = b[m - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[ b[m - 1]]], # < b[m - 1] &]; While[ Position[t, b[k]] == {} && k < 1000, k++ ]; If[ k == 1000, t = Select[ Union[ Join[t, Table[ b[i], {i, 2, k}]]], # > n &]; -1, k - 1]]; lst = {{1, 0}}; Do[d = f[n]; If[d > lst[[ -1, 2]], AppendTo[lst, {n, d}]], {n, 60000}]; Transpose[ lst][[1]]
CROSSREFS
Cf. A105593, the b(n)'s are in A105600.
Sequence in context: A315111 A165594 A023497 * A233184 A356675 A072174
KEYWORD
nonn
AUTHOR
R. K. Guy and Robert G. Wilson v, Apr 15 2005
STATUS
approved