|
|
|
|
1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Row sums are A105595.
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
|
|
FORMULA
|
T(n, k) = mod(Sum_{j=0..n}(abs(mu(binomial(n,j)))*mod(binomial(j,k),2)), 2).
|
|
EXAMPLE
|
Triangle starts
1;
0,1;
1,1,1;
0,0,0,1;
1,0,1,0,1;
0,1,0,1,0,1;
0,0,0,0,1,1,1;
|
|
MAPLE
|
A105594 := proc(n, k)
add( abs(numtheory[mobius](binomial(n, j)))*modp(binomial(j, k), 2) , j=0..n) ;
% mod 2 ;
end proc: # R. J. Mathar, Nov 28 2014
|
|
MATHEMATICA
|
T[n_, k_] := Sum[Abs[MoebiusMu[Binomial[n, j]]*Mod[Binomial[j, k], 2]], {j, 0, n}] // Mod[#, 2]&;
Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 15 2020 *)
|
|
CROSSREFS
|
Cf. A047999, A103447, A105595, A105596.
Sequence in context: A267272 A181656 A090971 * A091949 A039984 A153639
Adjacent sequences: A105591 A105592 A105593 * A105595 A105596 A105597
|
|
KEYWORD
|
easy,nonn,tabl
|
|
AUTHOR
|
Paul Barry, Apr 14 2005
|
|
STATUS
|
approved
|
|
|
|