The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105594 Triangle read by rows: abs(A103447)*A047999 mod 2. 5
 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums are A105595. LINKS Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened) FORMULA T(n, k) = mod(Sum_{j=0..n}(abs(mu(binomial(n,j)))*mod(binomial(j,k),2)), 2). EXAMPLE Triangle starts 1; 0,1; 1,1,1; 0,0,0,1; 1,0,1,0,1; 0,1,0,1,0,1; 0,0,0,0,1,1,1; MAPLE A105594 := proc(n, k) add( abs(numtheory[mobius](binomial(n, j)))*modp(binomial(j, k), 2) , j=0..n) ; % mod 2 ; end proc: # R. J. Mathar, Nov 28 2014 MATHEMATICA T[n_, k_] := Sum[Abs[MoebiusMu[Binomial[n, j]]*Mod[Binomial[j, k], 2]], {j, 0, n}] // Mod[#, 2]&; Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 15 2020 *) CROSSREFS Cf. A047999, A103447, A105595, A105596. Sequence in context: A267272 A181656 A090971 * A091949 A039984 A153639 Adjacent sequences: A105591 A105592 A105593 * A105595 A105596 A105597 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, Apr 14 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 4 22:05 EST 2023. Contains 360082 sequences. (Running on oeis4.)