login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105594 Triangle read by rows: abs(A103447)*A047999 mod 2. 5
1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Row sums are A105595.

LINKS

Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)

FORMULA

T(n, k) = mod(Sum_{j=0..n}(abs(mu(binomial(n,j)))*mod(binomial(j,k),2)), 2).

EXAMPLE

Triangle starts

1;

0,1;

1,1,1;

0,0,0,1;

1,0,1,0,1;

0,1,0,1,0,1;

0,0,0,0,1,1,1;

MAPLE

A105594 := proc(n, k)

add( abs(numtheory[mobius](binomial(n, j)))*modp(binomial(j, k), 2) , j=0..n) ;

% mod 2 ;

end proc: # R. J. Mathar, Nov 28 2014

MATHEMATICA

T[n_, k_] := Sum[Abs[MoebiusMu[Binomial[n, j]]*Mod[Binomial[j, k], 2]], {j, 0, n}] // Mod[#, 2]&;

Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 15 2020 *)

CROSSREFS

Cf. A047999, A103447, A105595, A105596.

Sequence in context: A267272 A181656 A090971 * A091949 A039984 A153639

Adjacent sequences: A105591 A105592 A105593 * A105595 A105596 A105597

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, Apr 14 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 4 22:05 EST 2023. Contains 360082 sequences. (Running on oeis4.)