login
A105594
Triangle read by rows: abs(A103447)*A047999 mod 2.
6
1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1
OFFSET
0,1
COMMENTS
Row sums are A105595.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
FORMULA
T(n, k) = mod(Sum_{j=0..n}(abs(mu(binomial(n,j)))*mod(binomial(j,k),2)), 2).
EXAMPLE
Triangle starts
1;
0,1;
1,1,1;
0,0,0,1;
1,0,1,0,1;
0,1,0,1,0,1;
0,0,0,0,1,1,1;
MAPLE
A105594 := proc(n, k)
add( abs(numtheory[mobius](binomial(n, j)))*modp(binomial(j, k), 2) , j=0..n) ;
% mod 2 ;
end proc: # R. J. Mathar, Nov 28 2014
MATHEMATICA
T[n_, k_] := Sum[Abs[MoebiusMu[Binomial[n, j]]*Mod[Binomial[j, k], 2]], {j, 0, n}] // Mod[#, 2]&;
Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 15 2020 *)
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 14 2005
STATUS
approved