login
A047439
Numbers that are congruent to {0, 1, 5, 6} mod 8.
1
0, 1, 5, 6, 8, 9, 13, 14, 16, 17, 21, 22, 24, 25, 29, 30, 32, 33, 37, 38, 40, 41, 45, 46, 48, 49, 53, 54, 56, 57, 61, 62, 64, 65, 69, 70, 72, 73, 77, 78, 80, 81, 85, 86, 88, 89, 93, 94, 96, 97, 101, 102, 104, 105, 109, 110, 112, 113, 117, 118, 120, 121, 125
OFFSET
1,3
FORMULA
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=5 and b(k)=2^(k+1) for k>1. - Philippe Deléham, Oct 19 2011
G.f.: x^2*(1+4*x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
a(n) = Sum_{i=1..n} gcd(i+2, i-2). - Wesley Ivan Hurt, Jan 23 2014
From Wesley Ivan Hurt, May 22 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 2n+(1+i)*(4i-4-(1-i)*i^(2n)-i^(1-n)+i^n)/4 where i=sqrt(-1).
a(2n) = A047452, a(2n-1) = A047615(n). (End)
Sum_{n>=2} (-1)^n/a(n) = (2*sqrt(2)-1)*Pi/16 + (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021
MAPLE
A047439:=n->add(gcd(i+2, i-2), i=1..n); seq(A047439(n), n=0..100); # Wesley Ivan Hurt, Jan 23 2014
MATHEMATICA
Table[Sum[GCD[i + 2, i - 2], {i, n}], {n, 0, 100}] (* Wesley Ivan Hurt, Jan 23 2014 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 5, 6]]; // Wesley Ivan Hurt, May 22 2016
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Wesley Ivan Hurt, May 22 2016
STATUS
approved