login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047571 Numbers that are congruent to {0, 2, 4, 5, 6, 7} mod 8. 1
0, 2, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 66, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 90 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1).

FORMULA

From Chai Wah Wu, May 30 2016: (Start)

a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+2*a(n-5)-a(n-6) for n>6.

G.f.: x^2*(x^4 + x^2 + 2)/((x - 1)^2*(x^2 - x + 1)*(x^2 + x + 1)). (End)

a(n) = (8*n - 2*sqrt(3)*sin(Pi*(n+1)/3) + 2*sin(2*Pi*(n+1)/3)/sqrt(3) - 4)/6. - Ilya Gutkovskiy, May 30 2016

a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-3, a(6k-3) = 8k-4, a(6k-4) = 8k-6, a(6k-5) = 8k-8. - Wesley Ivan Hurt, Jun 16 2016

MAPLE

A047571:=n->(8*n-2*sqrt(3)*sin(Pi*(n+1)/3)+2*sin(2*Pi*(n+1)/3)/sqrt(3)-4)/6: seq(A047571(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016

MATHEMATICA

LinearRecurrence[{2, -2, 2, -2, 2, -1}, {0, 2, 4, 5, 6, 7} , 50] (* G. C. Greubel, May 30 2016 *)

PROG

(MAGMA) [n: n in [0..200] | n mod 8 in [0, 2, 4, 5, 6, 7]]; // Vincenzo Librandi, May 30 2016

CROSSREFS

Sequence in context: A039079 A260375 A188160 * A190237 A190225 A276706

Adjacent sequences:  A047568 A047569 A047570 * A047572 A047573 A047574

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 16:48 EDT 2019. Contains 328022 sequences. (Running on oeis4.)