|
|
A047279
|
|
Numbers that are congruent to {0, 1, 2, 6} mod 7.
|
|
1
|
|
|
0, 1, 2, 6, 7, 8, 9, 13, 14, 15, 16, 20, 21, 22, 23, 27, 28, 29, 30, 34, 35, 36, 37, 41, 42, 43, 44, 48, 49, 50, 51, 55, 56, 57, 58, 62, 63, 64, 65, 69, 70, 71, 72, 76, 77, 78, 79, 83, 84, 85, 86, 90, 91, 92, 93, 97, 98, 99, 100, 104, 105, 106, 107, 111, 112
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Table of n, a(n) for n=1..65.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
|
|
FORMULA
|
G.f.: x^2*(1+x+4*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-17+3*(i^(2n)+(1+i)*i^(-n)+(1-i)*i^n))/8 where i = sqrt(-1).
a(2n) = A047336(n), a(2n-1) = A047352(n).
a(n) = A047361(n+1) - 1. a(2-n) = - A047322(n). (End)
|
|
MAPLE
|
A047279:=n->(14*n-17+3*(I^(2*n)+(1+I)*I^(-n)+(1-I)*I^n))/8: seq(A047279(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 2, 6, 7}, 80] (* Harvey P. Dale, Jun 15 2015 *)
|
|
PROG
|
(MAGMA) [n : n in [0..100] | n mod 7 in [0, 1, 2, 6]]; // Wesley Ivan Hurt, May 21 2016
|
|
CROSSREFS
|
Cf. A047322, A047336, A047352, A047361.
Sequence in context: A243652 A080780 A138168 * A162917 A250183 A260139
Adjacent sequences: A047276 A047277 A047278 * A047280 A047281 A047282
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Wesley Ivan Hurt, May 21 2016
|
|
STATUS
|
approved
|
|
|
|