OFFSET
1,2
COMMENTS
Row sum of a triangle where the top value is 2 and every elementary triangle or triple is required to have the values 1,2,2 (see link below). Compare with A008854 where the triple contains 1,2,2 with 1 at the top. - Craig Knecht, Oct 18 2015
Also, numbers k such that k*(k^2+1)/5 is a nonnegative integer. - Bruno Berselli, Jan 16 2016
Conjecture: Apart from 0, the sequence gives the values for c/6, such that an infinite number of primes, p, result in both p^2-c and p^2+c being positive primes, except when c is a square. When c is square solutions exist for c (both within and outside of the a(n) set), but occur at only a single prime p. See A274609. Other c values with only one prime providing a solution occur when p^2-c=3. See A274610. The only remaining c values with single p solutions are: c=2 (with p=3) and c=6 (with p=5). - Richard R. Forberg, Jun 26 2016
See A047363 for case of p^3 +- c. See A005097 and A177735 for observations on the general case p^q +- c. - Richard R. Forberg, Aug 11 2016
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Craig Knecht, Row sum for the 1,2,2 triangle with 2 at the top.
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
From R. J. Mathar, Oct 18 2008: (Start)
G.f.: x^2*(2 + x + 2*x^2)/((1 - x)^2*(1 + x + x^2)).
a(n) = A028738(n-2), 1 < n < 16. (End)
a(n) = floor((5*n-4)/3). - Gary Detlefs, Oct 28 2011
a(n) = 2*n - 2 - floor(n/3). - Wesley Ivan Hurt, Nov 07 2013
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (15*n-15-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k-2, a(3k-1) = 5k-3, a(3k-2) = 5k-5. (End)
a(n) = n - 1 + floor((2n-1)/3). - Wesley Ivan Hurt, Dec 27 2016
Sum_{n>=2} (-1)^n/a(n) = arccoth(3/sqrt(5))/sqrt(5) - log(2)/5. - Amiram Eldar, Dec 10 2021
From Peter Bala, Aug 04 2022: (Start)
a(n) = a(floor(n/2)) + a(1 + ceiling(n/2)) for n >= 4 with a(1) = 0, a(2) = 2 and a(3) = 3.
MAPLE
MATHEMATICA
Floor[(Range[5, 305, 5] - 4)/3] (* Vladimir Joseph Stephan Orlovsky, Jan 26 2012 *)
Flatten[Table[5n + {0, 2, 3}, {n, 0, 19}]] (* Alonso del Arte, Nov 07 2013 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 2, 3, 5}, 100] (* Vincenzo Librandi, Jun 15 2016 *)
PROG
(PARI) a(n)=(5*n-4)\3 \\ Charles R Greathouse IV, Oct 28 2011
(PARI) concat(0, Vec(x^2*(2+x+2*x^2)/((1-x)^2*(1+x+x^2)) + O(x^100))) \\ Altug Alkan, Oct 26 2015
(Magma) [n : n in [0..150] | n mod 5 in [0, 2, 3]]; // Wesley Ivan Hurt, Jun 14 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved