login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047563 Numbers that are congruent to {0, 3, 4, 5, 6, 7} mod 8. 1
0, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).

FORMULA

a(n) = (1/9)*{13*(n mod 6)+[(n+1) mod 6]+[(n+2) mod 6]+[(n+3) mod 6]+[(n+4) mod 6]-2*[(n+5) mod 6]} + 8*A054895, with n>=0. - Paolo P. Lava, Nov 05 2007

From Chai Wah Wu, May 29 2016: (Start)

a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.

G.f.: x^2*(x^5 + x^4 + x^3 + x^2 + x + 3)/(x^7 - x^6 - x + 1). (End)

From Wesley Ivan Hurt, Jun 16 2016: (Start)

a(n) = (24*n-9+3*cos(n*Pi)-12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/18.

a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-3, a(6k-3) = 8k-4, a(6k-4) = 8k-5, a(6k-5) = 8k-8. (End)

MAPLE

A047563:=n->(24*n-9+3*cos(n*Pi)-12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/18: seq(A047563(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016

MATHEMATICA

LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 3, 4, 5, 6, 7, 8}, 50] (* G. C. Greubel, May 29 2016 *)

PROG

(MAGMA) [n : n in [0..100] | n mod 8 in [0] cat [3..7]]; // Wesley Ivan Hurt, May 29 2016

CROSSREFS

Cf. A054895.

Sequence in context: A207669 A001272 A273664 * A261604 A120561 A051016

Adjacent sequences:  A047560 A047561 A047562 * A047564 A047565 A047566

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 01:29 EST 2019. Contains 320364 sequences. (Running on oeis4.)