

A014176


Decimal expansion of the silver mean, 1+sqrt(2).


23



2, 4, 1, 4, 2, 1, 3, 5, 6, 2, 3, 7, 3, 0, 9, 5, 0, 4, 8, 8, 0, 1, 6, 8, 8, 7, 2, 4, 2, 0, 9, 6, 9, 8, 0, 7, 8, 5, 6, 9, 6, 7, 1, 8, 7, 5, 3, 7, 6, 9, 4, 8, 0, 7, 3, 1, 7, 6, 6, 7, 9, 7, 3, 7, 9, 9, 0, 7, 3, 2, 4, 7, 8, 4, 6, 2, 1, 0, 7, 0, 3, 8, 8, 5, 0, 3, 8, 7, 5, 3, 4, 3, 2, 7, 6, 4, 1, 5, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

From Hieronymus Fischer, Jan 02 2009: (Start)
Set c:=1+sqrt(2). Then the fractional part of c^n equals 1/c^n, if n odd. For even n, the fractional part of c^n is equal to 1(1/c^n).
c:=1+sqrt(2) satisfies cc^(1)=floor(c)=2, hence c^n + (c)^(n) = round(c^n) for n>0, which follows from the general formula of A001622.
1/c = sqrt(2)1.
See A001622 for a general formula concerning the fractional parts of powers of numbers x>1, which satisfy xx^(1)=floor(x).
Other examples of constants x satisfying the relation xx^(1)=floor(x) include A001622 (the golden ratio: where floor(x)=1) and A098316 (the "bronze" ratio: where floor(x)=3). (End)
In terms of continued fractions the constant c can be described by c=[2;2,2,2,...].  Hieronymus Fischer, Oct 20 2010
Side length of smallest square containing five circles of diameter 1.  Charles R Greathouse IV, Apr 05, 2011
Largest radius of four circles tangent to a circle of radius 1.  Charles R Greathouse IV, Jan 14 2013
An analog of Fermat theorem: for prime p, round(c^p) == 2 (mod p).  Vladimir Shevelev, Mar 02 2013


LINKS

Table of n, a(n) for n=1..99.
Eric Weisstein's World of Mathematics, Silver Ratio
Wikipedia, Exact trigonometric constants
Wikipedia, Silver ratio


FORMULA

1+sqrt(2) = A179807(n+1)/A179807(n) as n > infinity. (conjecture)
Equals cot(Pi/8). [Bruno Berselli, Dec 13 2012]
Silver mean = 2 + sum_{n>=0} (1)^n/(P(n1)*P(n)), where P(n) is the nth Pell number (A000129).  Vladimir Shevelev, Feb 22 2013
Equals exp(arcsinh(1)) which is exp(A091648).  Stanislav Sykora, Nov 01 2013
exp(asinh(cos(Pi/n))) > sqrt(2)+1 as n > infinity.  Geoffrey Caveney, Apr 23 2014
exp(asinh(cos(Pi/2  log(sqrt(2)+1)*i)))= exp(asinh(sin(log(sqrt(2)+1)*i))) = i.  Geoffrey Caveney, Apr 23 2014


MATHEMATICA

RealDigits[1 + Sqrt@ 2, 10, 111] (* Or *)
RealDigits[Exp@ ArcSinh@ 1, 10, 111][[1]] (* Robert G. Wilson v, Aug 17 2011 *)
Circs[n_] := With[{r = Sin[Pi/n]/(1  Sin[Pi/n])}, Graphics[Append[
Table[Circle[(r + 1) {Sin[2 Pi k/n], Cos[2 Pi k/n]}, r], {k, n}], {Blue, Circle[{0, 0}, 1]}]]] Circs[4] (* Charles R Greathouse IV, Jan 14 2013 *)


PROG

(PARI) 1+sqrt(2) \\ Charles R Greathouse IV, Jan 14 2013


CROSSREFS

Cf. A002193, A000032, A006497, A080039.
See A098316 for [3;3,3,...]; A098317 for [4;4,4,...]; A098318 for [5;5,5,...].  Hieronymus Fischer, Oct 20 2010
Sequence in context: A194733 A143973 A011167 * A060047 A135185 A201774
Adjacent sequences: A014173 A014174 A014175 * A014177 A014178 A014179


KEYWORD

nonn,cons,easy


AUTHOR

N. J. A. Sloane.


STATUS

approved



