login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014176 Decimal expansion of the silver mean, 1+sqrt(2). 36
2, 4, 1, 4, 2, 1, 3, 5, 6, 2, 3, 7, 3, 0, 9, 5, 0, 4, 8, 8, 0, 1, 6, 8, 8, 7, 2, 4, 2, 0, 9, 6, 9, 8, 0, 7, 8, 5, 6, 9, 6, 7, 1, 8, 7, 5, 3, 7, 6, 9, 4, 8, 0, 7, 3, 1, 7, 6, 6, 7, 9, 7, 3, 7, 9, 9, 0, 7, 3, 2, 4, 7, 8, 4, 6, 2, 1, 0, 7, 0, 3, 8, 8, 5, 0, 3, 8, 7, 5, 3, 4, 3, 2, 7, 6, 4, 1, 5, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

From Hieronymus Fischer, Jan 02 2009: (Start)

Set c:=1+sqrt(2). Then the fractional part of c^n equals 1/c^n, if n odd. For even n, the fractional part of c^n is equal to 1-(1/c^n).

c:=1+sqrt(2) satisfies c-c^(-1)=floor(c)=2, hence c^n + (-c)^(-n) = round(c^n) for n>0, which follows from the general formula of A001622.

1/c = sqrt(2)-1.

See A001622 for a general formula concerning the fractional parts of powers of numbers x>1, which satisfy x-x^(-1)=floor(x).

Other examples of constants x satisfying the relation x-x^(-1)=floor(x) include A001622 (the golden ratio: where floor(x)=1) and A098316 (the "bronze" ratio: where floor(x)=3). (End)

In terms of continued fractions the constant c can be described by c=[2;2,2,2,...]. - Hieronymus Fischer, Oct 20 2010

Side length of smallest square containing five circles of diameter 1. - Charles R Greathouse IV, Apr 05, 2011

Largest radius of four circles tangent to a circle of radius 1. - Charles R Greathouse IV, Jan 14 2013

An analog of Fermat theorem: for prime p, round(c^p) == 2 (mod p). - Vladimir Shevelev, Mar 02 2013

n*(1+sqrt(2)) is the perimeter of a 45-45-90 triangle with hypotenuse n. - Wesley Ivan Hurt, Apr 09 2016

LINKS

Table of n, a(n) for n=1..99.

Eric Weisstein's World of Mathematics, Silver Ratio

Wikipedia, Exact trigonometric constants

Wikipedia, Silver ratio

FORMULA

1+sqrt(2) = lim A179807(n+1)/A179807(n) as n -> infinity. (conjecture)

Equals cot(Pi/8) = tan(Pi*3/8). - Bruno Berselli, Dec 13 2012, and M. F. Hasler, Jul 08 2016

Silver mean = 2 + Sum_{n>=0} (-1)^n/(P(n-1)*P(n)), where P(n) is the n-th Pell number (A000129). - Vladimir Shevelev, Feb 22 2013

Equals exp(arcsinh(1)) which is exp(A091648). - Stanislav Sykora, Nov 01 2013

exp(asinh(cos(Pi/n))) -> sqrt(2)+1 as n -> infinity. - Geoffrey Caveney, Apr 23 2014

exp(asinh(cos(Pi/2 - log(sqrt(2)+1)*i)))= exp(asinh(sin(log(sqrt(2)+1)*i))) = i. - Geoffrey Caveney, Apr 23 2014

EXAMPLE

2.414213562373095...

MAPLE

Digits:=100: evalf(1+sqrt(2)); # Wesley Ivan Hurt, Apr 09 2016

MATHEMATICA

RealDigits[1 + Sqrt@ 2, 10, 111] (* Or *)

RealDigits[Exp@ ArcSinh@ 1, 10, 111][[1]] (* Robert G. Wilson v, Aug 17 2011 *)

Circs[n_] := With[{r = Sin[Pi/n]/(1 - Sin[Pi/n])}, Graphics[Append[

  Table[Circle[(r + 1) {Sin[2 Pi k/n], Cos[2 Pi k/n]}, r], {k, n}],   {Blue, Circle[{0, 0}, 1]}]]] Circs[4] (* Charles R Greathouse IV, Jan 14 2013 *)

PROG

(PARI) 1+sqrt(2) \\ Charles R Greathouse IV, Jan 14 2013

CROSSREFS

Cf. A002193, A000032, A006497, A080039.

See A098316 for [3;3,3,...]; A098317 for [4;4,4,...]; A098318 for [5;5,5,...]. - Hieronymus Fischer, Oct 20 2010

Sequence in context: A194733 A143973 A011167 * A060047 A135185 A201774

Adjacent sequences:  A014173 A014174 A014175 * A014177 A014178 A014179

KEYWORD

nonn,cons,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 15:01 EST 2016. Contains 278781 sequences.