This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323258 a(n) is the X-coordinate of the n-th point of the first type of Wunderlich curve (starting at the origin and occupying the first quadrant). 3
 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 4, 3, 3, 4, 5, 5, 4, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8, 8, 8, 7, 7, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The first type of Wunderlich curve is a plane-filling curve. Hence for any x >= 0 and y >= 0, there is a unique n > 0 such that a(n) = x and A323259(n) = y. LINKS Rémy Sigrist, Table of n, a(n) for n = 1..6561 Robert Dickau, Wunderlich Curves Rémy Sigrist, Illustration of initial terms Wolfram Demonstrations Project, Wunderlich Curves PROG (PARI) s = [0, 1, 2, 2+I, 1+I, I, 2*I, 1+2*I, 2+2*I]; w = apply(z -> imag(z) + I*real(z), s); r = [0, 1, 0, 3, 2, 3, 0, 1, 0] a(n) = {     my (d=if (n>1, Vecrev(digits(n-1, 9)), [0]), z=s[1+d[1]]);     for (i=2, #d,         my (c=(3^(i-1)-1)/2*(1+I));         z = 3^(i-1) * w[1+d[i]] + c + (z-c) * I^r[1+d[i]];     );     return (real(z)); } CROSSREFS See A323259 for the Y-coordinate. See A163528 for a similar sequence. Sequence in context: A014604 A015199 A234044 * A219489 A051168 A281459 Adjacent sequences:  A323255 A323256 A323257 * A323259 A323260 A323261 KEYWORD nonn AUTHOR Rémy Sigrist, Jan 09 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 20:01 EDT 2019. Contains 328373 sequences. (Running on oeis4.)