This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047466 Numbers that are congruent to {0, 1, 2, 4} mod 8. 2
 0, 1, 2, 4, 8, 9, 10, 12, 16, 17, 18, 20, 24, 25, 26, 28, 32, 33, 34, 36, 40, 41, 42, 44, 48, 49, 50, 52, 56, 57, 58, 60, 64, 65, 66, 68, 72, 73, 74, 76, 80, 81, 82, 84, 88, 89, 90, 92, 96, 97, 98, 100, 104, 105, 106, 108, 112, 113, 114, 116, 120, 121, 122 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Bruno Berselli, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA G.f.: x^2*(1+x+2*x^2+4*x^3) / ( (1+x)*(1+x^2)*(1-x)^2 ). - R. J. Mathar, Oct 08 2011 a(n) = 2*n-4+(3-(-1)^n)*(1-i^(n*(n+1)))/4, where i=sqrt(-1). [Bruno Berselli, Jul 18 2012] From Wesley Ivan Hurt, Jun 01 2016: (Start) a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. a(2k) = A047461(k), a(2k-1) = A047467(k). (End) MAPLE A047466:=n->2*n-4+(3-I^(2*n))*(1-I^(n*(n+1)))/4: seq(A047466(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016 MATHEMATICA Select[Range[0, 120], MemberQ[{0, 1, 2, 4}, Mod[#, 8]] &] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 2, 4, 8}, 60] (* Bruno Berselli, Jul 18 2012 *) PROG Contribution from Bruno Berselli, Jul 18 2012: (Start) (MAGMA) [n: n in [0..120] | n mod 8 in [0, 1, 2, 4]]; (Maxima) makelist(2*n-4+(3-(-1)^n)*(1-%i^(n*(n+1)))/4, n, 1, 60); (PARI) concat(0, Vec((1+x+2*x^2+4*x^3)/((1+x)*(1+x^2)*(1-x)^2)+O(x^60))) (End) CROSSREFS Essentially the same as A003485. Cf. A047461, A047467. Sequence in context: A131625 A196000 A044952 * A003485 A072602 A049642 Adjacent sequences:  A047463 A047464 A047465 * A047467 A047468 A047469 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 17:17 EDT 2019. Contains 323597 sequences. (Running on oeis4.)