OFFSET
0,2
COMMENTS
Number of 3 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01,1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by (n+2)*2^(m-1)+2*m*(n-1)-2 for m>1 and n>1. - Sergey Kitaev, Nov 12 2004
If Y is a 5-subset of an n-set X then, for n>=5, a(n-4) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
Where record values occur for the number of partitions of n into powers of 10: A179052(n) = A179051(a(n)). [Reinhard Zumkeller, Jun 27 2010]
Numbers ending in 0. - Wesley Ivan Hurt, Apr 10 2016
LINKS
Ivan Panchenko, Table of n, a(n) for n = 0..200
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 322
Tanya Khovanova, Recursive Sequences
S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
From Vincenzo Librandi, Dec 24 2010: (Start)
G.f.: 10*x/(x-1)^2.
a(n) = 2*a(n-1)-a(n-2) for n>1. (End)
a(n) = Sum_{i=2n-2..2n+2} i. - Wesley Ivan Hurt, Apr 11 2016
E.g.f.: 10*x*exp(x). - Stefano Spezia, May 31 2021
MAPLE
MATHEMATICA
Range[0, 1000, 10] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
PROG
(Haskell) a008592 = (10 *) -- Reinhard Zumkeller, Jun 13 2015
(PARI) vector(50, n, n--; 10*n) \\ Michel Marcus, Feb 05 2016
(PARI) x='x+O('x^999); concat(0, Vec(10*x/(x-1)^2)) \\ Altug Alkan, Apr 11 2016
(PARI) apply( A008592(n)=10*n, [1..55]) \\ M. F. Hasler, Apr 23 2021
(Magma) [10*n : n in [0..100]]; // Wesley Ivan Hurt, Apr 10 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved