login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008592
Multiples of 10: a(n) = 10 * n.
91
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530
OFFSET
0,2
COMMENTS
Number of 3 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01,1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by (n+2)*2^(m-1)+2*m*(n-1)-2 for m>1 and n>1. - Sergey Kitaev, Nov 12 2004
If Y is a 5-subset of an n-set X then, for n>=5, a(n-4) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
Complement of A067251; A168184(a(n)) = 0. [Reinhard Zumkeller, Nov 30 2009]
Where record values occur for the number of partitions of n into powers of 10: A179052(n) = A179051(a(n)). [Reinhard Zumkeller, Jun 27 2010]
Numbers ending in 0. - Wesley Ivan Hurt, Apr 10 2016
LINKS
Tanya Khovanova, Recursive Sequences
S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
FORMULA
From Vincenzo Librandi, Dec 24 2010: (Start)
G.f.: 10*x/(x-1)^2.
a(n) = 2*a(n-1)-a(n-2) for n>1. (End)
a(n) = Sum_{i=2n-2..2n+2} i. - Wesley Ivan Hurt, Apr 11 2016
E.g.f.: 10*x*exp(x). - Stefano Spezia, May 31 2021
MAPLE
A008592:=n->10*n: seq(A008592(n), n=0..100); # Wesley Ivan Hurt, Apr 10 2016
MATHEMATICA
Range[0, 1000, 10] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
PROG
(Haskell) a008592 = (10 *) -- Reinhard Zumkeller, Jun 13 2015
(PARI) vector(50, n, n--; 10*n) \\ Michel Marcus, Feb 05 2016
(PARI) x='x+O('x^999); concat(0, Vec(10*x/(x-1)^2)) \\ Altug Alkan, Apr 11 2016
(PARI) apply( A008592(n)=10*n, [1..55]) \\ M. F. Hasler, Apr 23 2021
(Magma) [10*n : n in [0..100]]; // Wesley Ivan Hurt, Apr 10 2016
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved