

A067251


Numbers with no trailing zeros in decimal representation.


30



1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Or, decimated numbers: every 10th number has been omitted from the natural numbers.  Cino Hilliard, Feb 21 2005. For example, The 10th number starting with 1 is 10 and is missing from the table because it was decimated.
The word "decimated" can be interpreted in several ways and should be used with caution.  N. J. A. Sloane, Feb 21 2005
a(n) mod 10 > 0 for all n.
Not the same as A052382, as 101 is included.
A004086(A004086(a(n))) = a(n).
Numbers in here but not in A043095 are 81, 91, 92, 93, 94,... for example.  R. J. Mathar, Sep 30 2008
Complement of A008592; A168184(a(n)) = 1.  Reinhard Zumkeller, Nov 30 2009
The integers 100*a(n) are precisely the numbers whose square ends with exactly 4 identical digits while the integers 10*a(n) form just a subsequence of the numbers whose square ends with exactly 2 identical digits (A346678).  Bernard Schott, Oct 04 2021


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,1,1).
Index entries for 10automatic sequences.


FORMULA

a(n) = n + floor((n1)/9).
From Colin Barker, Sep 28 2015: (Start)
a(n) = a(n1) + a(n9)  a(n10) for n>10.
G.f.: x*(x+1)*(x^4x^3+x^2x+1)*(x^4+x^3+x^2+x+1) / ((x1)^2*(x^2+x+1)*(x^6+x^3+1)).
(End)


MAPLE

S := seq(n + floor((n1)/9), n=1..100); (* Bernard Schott, Oct 04 2021 *)


MATHEMATICA

DeleteCases[Range[110], _?(Divisible[#, 10]&)] (* Harvey P. Dale, May 16 2016 *)


PROG

(PARI) f(n) = for(x=1, n, if(x%10, print1(x", "))) \\ Cino Hilliard, Feb 21 2005
(PARI) Vec(x*(x+1)*(x^4x^3+x^2x+1)*(x^4+x^3+x^2+x+1)/((x1)^2*(x^2+x+1)*(x^6+x^3+1)) + O(x^100)) \\ Colin Barker, Sep 28 2015
(Haskell)
a067251 n = a067251_list !! (n1)
a067251_list = filter ((> 0) . flip mod 10) [0..]
 Reinhard Zumkeller, Jul 11 2015, Dec 29 2011
(Python)
def a(n): return n + (n1)//9
print([a(n) for n in range(1, 95)]) # Michael S. Branicky, Oct 04 2021


CROSSREFS

Cf. A076641 (reversed).
Cf. A004086, A008592, A043095, A052382, A168184.
Cf. A039685 (a subsequence), A346678, A346940, A346942.
Sequence in context: A023804 A209931 A342851 * A052382 A055572 A052040
Adjacent sequences: A067248 A067249 A067250 * A067252 A067253 A067254


KEYWORD

nonn,base,easy


AUTHOR

Reinhard Zumkeller, Mar 10 2002


EXTENSIONS

Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar
Typos corrected in a comment line by Reinhard Zumkeller, Apr 04 2010


STATUS

approved



