login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179051 Number of partitions of n into powers of 10 (cf. A011557). 10
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

a(n) = A133880(n) for n < 90;

a(n) = A132272(n) for n < 100;

a(10^n) = A145513(n);

A179052 and A008592 give record values and where they occur: A179052(n)=a(A008592(n));

a(10*n) = A179052(n).

LINKS

R. Zumkeller, Table of n, a(n) for n = 0..10000

Index entries for related partition-counting sequences

FORMULA

a(n) = p(n,1) where p(n,k) = if k<=n then p(10*[(n-k)/10],k)+p(n,10*k) else 0^n.

G.f.: Product_{k>=0} 1/(1 - x^(10^k)). - Ilya Gutkovskiy, Jul 26 2017

EXAMPLE

a(19) = #{10 + 9x1, 19x1} = 2;

a(20) = #{10 + 10, 10 + 10x1, 20x1} = 3;

a(21) = #{10 + 10 + 1, 10 + 11x1, 21x1} = 3.

PROG

(Haskell)

a179051 = p 1 where

   p _ 0 = 1

   p k m = if m < k then 0 else p k (m - k) + p (k * 10) m

-- Reinhard Zumkeller, Feb 05 2012

CROSSREFS

Number of partitions of n into powers of b: b=2 A018819, b=3 A062051.

Cf. A206245, A000041, A179051.

Sequence in context: A226233 A059995 A132272 * A054899 A061217 A102684

Adjacent sequences:  A179048 A179049 A179050 * A179052 A179053 A179054

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Jun 27 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 01:17 EDT 2018. Contains 315360 sequences. (Running on oeis4.)