login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047202 Numbers that are congruent to {2, 3, 4} mod 5. 33
2, 3, 4, 7, 8, 9, 12, 13, 14, 17, 18, 19, 22, 23, 24, 27, 28, 29, 32, 33, 34, 37, 38, 39, 42, 43, 44, 47, 48, 49, 52, 53, 54, 57, 58, 59, 62, 63, 64, 67, 68, 69, 72, 73, 74, 77, 78, 79, 82, 83, 84, 87, 88, 89, 92, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..65.

Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).

FORMULA

G.f.: x*(2+x+x^2+x^3) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 07 2011

From Wesley Ivan Hurt, Jun 14 2016: (Start)

a(n) = a(n-1) + a(n-3) - a(n-4) for n>3.

a(n) = (15*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.

a(3k) = 5k-1, a(3k-1) = 5k-2, a(3k-2) = 5k-3. (End)

a(n) = 2*n - floor((n-1)/3) - ((n-1) mod 3). - Wesley Ivan Hurt, Sep 26 2017

MAPLE

A047202:=n->(15*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047202(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016

MATHEMATICA

Select[Range[0, 200], MemberQ[{2, 3, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)

PROG

(MAGMA) [n: n in [1..150] | n mod 5 in [2..4]]; // Vincenzo Librandi, Mar 31 2011

(PARI) a(n)=n\3*5+[-1, 2, 3][n%3+1] \\ Charles R Greathouse IV, Dec 22 2011

CROSSREFS

Sequence in context: A061856 A105941 A276876 * A064953 A097503 A030701

Adjacent sequences:  A047199 A047200 A047201 * A047203 A047204 A047205

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 22:36 EDT 2018. Contains 316327 sequences. (Running on oeis4.)