login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001872 Convolved Fibonacci numbers.
(Formerly M3476 N1413)
8
1, 4, 14, 40, 105, 256, 594, 1324, 2860, 6020, 12402, 25088, 49963, 98160, 190570, 366108, 696787, 1315072, 2463300, 4582600, 8472280, 15574520, 28481220, 51833600, 93914325, 169457708, 304597382, 545556512, 973877245, 1733053440, 3075011478 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..500

P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

V. E. Hoggatt, Jr. and M. Bicknell-Johnson, Fibonacci convolution sequences, Fib. Quart., 15 (1977), 117-122.

T. Mansour, Generalization of some identities involving the Fibonacci numbers

P. Moree, Convoluted convolved Fibonacci numbers

Index to sequences with linear recurrences with constant coefficients, signature (4,-2,-8,5,8,-2,-4,-1).

FORMULA

G.f.: 1/(1 - x - x^2)^4.

a(n)= A037027(n+3, 3) (Fibonacci convolution triangle).

a(n)= (n+5)*(n+3)*(4*(n+1)*F(n+2)+3*(n+2)*F(n+1))/150, F(n)=A000045(n). - Wolfdieter Lang, Apr 12 2000

For n>3, a(n-3) = sum(h+i+j+k=n, F(h)*F(i)*F(j)*F(k)). - Benoit Cloitre, Nov 01 2002

a(n)=F'''(n+3, 1)/6, i.e. 1/6 times the 3rd derivative of the (n+3)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006

a(n)=(((-I)^n)/3!)*diff(S(n+3,x),x$3)|_{x=I}. Third derivative of Chebyshev S(n+3,x) polynomial evaluated at x=I (imaginary unit) multiplied by ((-I)^(n-3))/3!. See A049310 for the S-polynomials. - Wolfdieter Lang, Apr 04 2007

a(n)=sum(i=ceil(n/2)..n, (i+1)*(i+2)*(i+3)*binomial(i,n-i))/6. [Vladimir Kruchinin, Apr 26 2011]

Recurrence: a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 5*a(n-4) + 8*a(n-5) - 2*a(n-6) - 4*a(n-7) - a(n-8). - Fung Lam, May 11 2014

MAPLE

a := n-> (Matrix(8, (i, j)-> if (i=j-1) then 1 elif j=1 then [4, -2, -8, 5, 8, -2, -4, -1][i] else 0 fi)^n)[1, 1]; seq (a(n), n=0..29);  # Alois P. Heinz, Aug 15 2008

MATHEMATICA

CoefficientList[Series[1/(1 - x - x^2)^4, {x, 0, 100}], x] (* Stefan Steinerberger, Apr 15 2006 *)

PROG

(PARI) Vec( 1/(1 - x - x^2)^4 + O(x^66) )  \\ Joerg Arndt, May 12 2014

CROSSREFS

Sequence in context: A121593 A160527 A023003 * A054443 A072674 A202900

Adjacent sequences:  A001869 A001870 A001871 * A001873 A001874 A001875

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Simon Plouffe

EXTENSIONS

More terms from James A. Sellers, Sep 08 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 20 17:11 EDT 2014. Contains 248351 sequences.