login
A001869
Number of n-bead necklaces with 5 colors.
(Formerly M3860 N1582)
12
1, 5, 15, 45, 165, 629, 2635, 11165, 48915, 217045, 976887, 4438925, 20346485, 93900245, 435970995, 2034505661, 9536767665, 44878791365, 211927736135, 1003867701485, 4768372070757, 22706531350485, 108372083629275, 518301258916445
OFFSET
0,2
COMMENTS
From Richard L. Ollerton, May 07 2021: (Start)
Here, as in A000031, turning over is not allowed.
(1/n) * Dirichlet convolution of phi(n) and 5^n, n>0. (End)
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 162.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(a).
LINKS
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
Juhani Karhumäki, S. Puzynina, M. Rao, and M. A. Whiteland, On cardinalities of k-abelian equivalence classes, arXiv preprint arXiv:1605.03319 [math.CO], 2016.
Eric Weisstein's World of Mathematics, Necklace.
FORMULA
a(n) = (1/n)*Sum_{d|n} phi(d)*5^(n/d), n > 0.
G.f.: 1 - Sum_{n>=1} phi(n)*log(1 - 5*x^n)/n. - Herbert Kociemba, Nov 01 2016
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} 5^gcd(n,k). - Ilya Gutkovskiy, Apr 17 2021
a(0) = 1; a(n) = (1/n)*Sum_{k=1..n} 5^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
MATHEMATICA
CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-5*x^i]/i, {i, 1, mx}], {x, 0, mx}], x] (* Herbert Kociemba, Nov 01 2016 *)
k=5; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* Robert A. Russell, Sep 21 2018 *)
PROG
(PARI) a(n) = if (n, sumdiv(n, d, eulerphi(d)*5^(n/d))/n, 1); \\ Michel Marcus, Nov 01 2016
CROSSREFS
Column 5 of A075195.
Cf. A054612.
Sequence in context: A207096 A035069 A176611 * A058425 A079798 A344814
KEYWORD
nonn,easy
STATUS
approved