login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001871 Expansion of 1/(1-3*x+x^2)^2.
(Formerly M4166 N1733)
14
1, 6, 25, 90, 300, 954, 2939, 8850, 26195, 76500, 221016, 632916, 1799125, 5082270, 14279725, 39935214, 111228804, 308681550, 853904015, 2355364650, 6480104231, 17786356776, 48715278000, 133167004200, 363372003625, 989900286774 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Convolution of A001906(n), n >= 1 (even-indexed Fibonacci numbers) with itself.

A001787 and this sequence arise in counting ordered trees of height at most k where only the right-most branch at the root actually achieves this height and the count is by the number of edges, with k = 3 for A001787 and k = 4 for this sequence.

Gives the number of 3412-avoiding permutations containing exactly one subsequence of type 321. - Dan Daly (ddaly(AT)du.edu), Apr 24 2008

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243, 2012. - From N. J. A. Sloane, May 09 2012

Sergey Kitaev, Jeffrey Remmel, Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv:1302.2274)

Valentin Ovsienko, Serge Tabachnikov, Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences, arXiv:1705.01623 [math.CO], 2017. See p. 9.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

J. Riordan, Notes to N. J. A. Sloane, Jul. 1968

John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.

Index entries for sequences related to Chebyshev polynomials.

Index entries for two-way infinite sequences

Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).

FORMULA

a(n) = (2*(2*n+1)*F(2*(n+1))+3*(n+1)*F(2*n+1))/5 with F(n) = A000045 (Fibonacci numbers).

a(n) = -a(-4-n) = ((4n+2)F(2n)+(7n+5)F(2n+1))/5 with F(n) = A000045 (Fibonacci numbers).

a(n) = [2a(n-1)+(n+1)F(2n+4)]/3, where F(n) = A000045 (Fibonacci numbers). - Emeric Deutsch, Oct 08 2002

G.f.: 1/(1-3x+x^2)^2.

a(n) = (Sum_{k=0..n} S(k, 3)S(n-k, 3)) S(n, x) = U(n, x/2) Chebyshev polynomials of 2nd kind, A049310. - Paul Barry, Nov 14 2003

a(n) = Sum_{k=1..n+1} F(2k)F(2(n-k+2)) where F(k) is the k-th Fibonacci number. - Dan Daly (ddaly(AT)du.edu), Apr 24 2008

a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Vincenzo Librandi, Mar 14 2011

a(n) = 2*A001870(n) - A238846(n). - Philippe Deléham, Mar 06 2014

MAPLE

A001871:=1/(z**2-3*z+1)**2; # Simon Plouffe in his 1992 dissertation

f:= gfun:-rectoproc({a(n)=6*a(n-1)-11*a(n-2)+6*a(n-3)-a(n-4),

a(0)=1, a(1)=6, a(2)=25, a(3)=90}, a(n), remember):

map(f, [$0..50]); # Robert Israel, May 05 2017

MATHEMATICA

CoefficientList[Series[1/(1-3x+x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 10 2012 *)

PROG

(PARI) a(n)=((4*n+2)*fibonacci(2*n)+(7*n+5)*fibonacci(2*n+1))/5

(MAGMA) I:=[1, 6, 25, 90]; [n le 4 select I[n] else 6*Self(n-1)-11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2012

(PARI) Vec(1/(1-3*x+x^2)^2 + O(x^100)) \\ Altug Alkan, Oct 31 2015

CROSSREFS

Partial sums of A001870 (one half of odd-indexed A001629(n), n >= 2, Fibonacci convolution).

Cf. A001629.

Sequence in context: A143628 A056279 A055337 * A000392 A099948 A277973

Adjacent sequences:  A001868 A001869 A001870 * A001872 A001873 A001874

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Additional comments from Wolfdieter Lang, Apr 07 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 25 12:38 EST 2018. Contains 299654 sequences. (Running on oeis4.)