This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001875 Convolved Fibonacci numbers. (Formerly M4412 N1865) 5
 1, 7, 35, 140, 490, 1554, 4578, 12720, 33705, 85855, 211519, 506408, 1182650, 2702350, 6056850, 13343820, 28947240, 61926900, 130814600, 273163100, 564415390, 1154933230, 2342193350, 4710707400, 9401674275, 18629923053, 36670044621, 71728832280, 139485074370 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = (((-I)^n)/6!)*((d^5/dx^5) S(n+6,x))|_{x=I}. Sixth derivative of Chebyshev S(n+6,x) polynomials evaluated at x=I (imaginary unit) multiplied by ((-I)^n)/6!. See A049310 for the S-polynomials. - Wolfdieter Lang, Apr 04 2007 a(n) = number of weak compositions of n in which exactly 6 part are 0 and all other parts are either 1 or 2. - Milan Janjic, Jun 28 2010 REFERENCES J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272. LINKS T. D. Noe, Table of n, a(n) for n = 0..500 P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5. P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers [Corrected annotated scanned copy] M. S. Waterman, Home Page (contains copies of his papers) FORMULA G.f.: (1 - x - x^2)^(-7). a(n) = F''''''(n+6, 1)/6!, i.e., 1/6! times the 6th derivative of the (n+6)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006 a(n) = Sum_{k=ceiling(n/2)..n} (k+1)*(k+2)*(k+3)*(k+4)*(k+5)*(k+6)*binomial(k,n-k)/720. - Vladimir Kruchinin, Apr 26 2011 MAPLE a:= n-> (Matrix(14, (i, j)-> if (i=j-1) then 1 elif j=1 then [7, -14, -7, 49, -14, -77, 29, 77, -14, -49, -7, 14, 7, 1][i] else 0 fi)^n)[1, 1]: seq (a(n), n=0..22); # Alois P. Heinz, Aug 15 2008 MATHEMATICA nn = 30; CoefficientList[Series[1/(1 - x - x^2)^7, {x, 0, nn}], x] (* T. D. Noe, Aug 10 2012 *) CROSSREFS Sequence in context: A160460 A160539 A023006 * A169794 A240418 A211843 Adjacent sequences:  A001872 A001873 A001874 * A001876 A001877 A001878 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.