This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001874 Convolved Fibonacci numbers. (Formerly M4174 N1738) 4
 1, 6, 27, 98, 315, 924, 2534, 6588, 16407, 39430, 91959, 209034, 464723, 1013292, 2171850, 4584620, 9546570, 19635840, 39940460, 80421600, 160437690, 317354740, 622844730, 1213580820, 2348773525, 4517541378, 8638447293, 16428864606, 31086197469, 58539877020 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = (((-i)^n)/5!)*(d^5/dx^5)S(n+5,x)|_{x=i}, where i is the imaginary unit. Fifth derivative of Chebyshev S(n+5,x) polynomials evaluated at x=i multiplied by ((-i)^n)/5!. See A049310 for the S-polynomials. - Wolfdieter Lang, Apr 04 2007 a(n) = number of weak compositions of n in which exactly 5 parts are 0 and all other parts are either 1 or 2. - Milan Janjic, Jun 28 2010 Conjecture: satisfies a linear recurrence having signature (6, -9, -10, 30, 6, -41, -6, 30, 10, -9, -6, -1). - Harvey P. Dale, Sep 09 2019 REFERENCES J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..500 P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5. FORMULA G.f.: ( 1 - x - x^2 )^-6. a(n)=F'''''(n+5, 1)/5!, i.e., 1/5! times the 5th derivative of the (n+5)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006 EXAMPLE G.f. = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 924*x^5 + 2534*x^6 + ... MAPLE a := n-> (Matrix(12, (i, j)-> if (i=j-1) then 1 elif j=1 then [6, -9, -10, 30, 6, -41, -6, 30, 10, -9, -6, -1][i] else 0 fi)^n)[1, 1]; seq (a(n), n=0..24); # Alois P. Heinz, Aug 15 2008 MATHEMATICA nn = 30; t = CoefficientList[Series[1/(1 - x - x^2)^6, {x, 0, nn}], x] (* T. D. Noe, Aug 10 2012 *) PROG (Sage) taylor( mul(x/(1-x-x^2)^2 for i in xrange(1, 4)), x, 0, 27) # Zerinvary Lajos, Jun 01 2009 CROSSREFS Sequence in context: A277283 A160533 A023005 * A009061 A012320 A097553 Adjacent sequences:  A001871 A001872 A001873 * A001875 A001876 A001877 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 21 09:14 EST 2019. Contains 329362 sequences. (Running on oeis4.)