login
A160527
Coefficients in the expansion of C^3/B^4, in Watson's notation of page 118.
6
1, 4, 14, 40, 105, 252, 574, 1237, 2568, 5138, 9988, 18893, 34937, 63238, 112370, 196244, 337477, 572024, 956956, 1581321, 2583637, 4176495, 6684820, 10599939, 16661401, 25972485, 40171474, 61672695, 94017765, 142368024, 214211760, 320350725, 476299978
OFFSET
0,2
LINKS
G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.
FORMULA
See Maple code in A160525 for formula.
G.f.: Product_{n >= 1} (1 - x^(7*n))^3/(1 - x^n)^4. - Seiichi Manyama, Nov 06 2016
a(n) ~ exp(Pi*sqrt(50*n/21)) * 5 / (196*sqrt(3)*n). - Vaclav Kotesovec, Nov 10 2017
EXAMPLE
G.f. = 1 + 4*x + 14*x^2 + 40*x^3 + 105*x^4 + 252*x^5 + 574*x^6 + ...
G.f. = q^17 + 4*q^41 + 14*q^65 + 40*q^89 + 105*q^113 + 252*q^137 + 574*q^161 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))^3 /(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
CROSSREFS
Sequence in context: A160463 A278680 A121593 * A023003 A001872 A054443
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 13 2009
STATUS
approved