This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023003 Number of partitions of n into parts of 4 kinds. 8
 1, 4, 14, 40, 105, 252, 574, 1240, 2580, 5180, 10108, 19208, 35693, 64960, 116090, 203984, 353017, 602348, 1014580, 1688400, 2778517, 4524760, 7296752, 11658920, 18468245, 29015700, 45235414, 70005376, 107585845, 164245380, 249162620, 375704920, 563251038 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is Euler transform of A010709. - Alois P. Heinz, Oct 17 2008 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 501 terms from T. D. Noe) Roland Bacher, P. De La Harpe, Conjugacy growth series of some infinitely generated groups, 2016, hal-01285685v2. Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8. P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, A. M. Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, arXiv preprint arXiv:1601.00958 [cond-mat.quant-gas], 2016. N. J. A. Sloane, Transforms FORMULA G.f.: Product_{m>=1} 1/(1-x^m)^4. a(0)=1, a(n) = (1/n) * Sum_{k=0..n-1} 4*a(k)*sigma_1(n-k). - Joerg Arndt, Feb 05 2011 a(n) ~ exp(2 * Pi * sqrt(2*n/3)) / (2^(7/4) * 3^(5/4) * n^(7/4)) * (1 - (35*sqrt(3)/(16*Pi) + Pi/(3*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Feb 28 2015, extended Jan 16 2017 G.f.: exp(4*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018 MAPLE with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*4, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008 MATHEMATICA nmax=50; CoefficientList[Series[Product[1/(1-x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 28 2015 *) CoefficientList[1/QPochhammer[x]^4 + O[x]^40, x] (* Jean-François Alcover, Jan 31 2016 *) PROG (PARI) \ps100 for(n=0, 100, print1((polcoeff(1/eta(x)^4, n, x)), ", ")) (Julia) # DedekindEta is defined in A000594. A023003List(len) = DedekindEta(len, -4) A023003List(33) |> println # Peter Luschny, Mar 10 2018 CROSSREFS Cf. 4th column of A144064. Sequence in context: A278680 A121593 A160527 * A001872 A054443 A281766 Adjacent sequences:  A023000 A023001 A023002 * A023004 A023005 A023006 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 09:29 EDT 2019. Contains 328056 sequences. (Running on oeis4.)