login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023003 Number of partitions of n into parts of 4 kinds. 8
1, 4, 14, 40, 105, 252, 574, 1240, 2580, 5180, 10108, 19208, 35693, 64960, 116090, 203984, 353017, 602348, 1014580, 1688400, 2778517, 4524760, 7296752, 11658920, 18468245, 29015700, 45235414, 70005376, 107585845, 164245380, 249162620, 375704920, 563251038 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is Euler transform of A010709. - Alois P. Heinz, Oct 17 2008

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 501 terms from T. D. Noe)

Roland Bacher, P. De La Harpe, Conjugacy growth series of some infinitely generated groups, 2016, hal-01285685v2.

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.

P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, A. M. Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, arXiv preprint arXiv:1601.00958 [cond-mat.quant-gas], 2016.

N. J. A. Sloane, Transforms

Index entries for expansions of Product_{k >= 1} (1-x^k)^m

FORMULA

G.f.: Product_{m>=1} 1/(1-x^m)^4.

a(0)=1, a(n) = (1/n) * Sum_{k=0..n-1} 4*a(k)*sigma_1(n-k). - Joerg Arndt, Feb 05 2011

a(n) ~ exp(2 * Pi * sqrt(2*n/3)) / (2^(7/4) * 3^(5/4) * n^(7/4)) * (1 - (35*sqrt(3)/(16*Pi) + Pi/(3*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Feb 28 2015, extended Jan 16 2017

G.f.: exp(4*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

MAPLE

with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*4, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008

MATHEMATICA

nmax=50; CoefficientList[Series[Product[1/(1-x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 28 2015 *)

CoefficientList[1/QPochhammer[x]^4 + O[x]^40, x] (* Jean-François Alcover, Jan 31 2016 *)

PROG

(PARI) \ps100

for(n=0, 100, print1((polcoeff(1/eta(x)^4, n, x)), ", "))

(Julia) # DedekindEta is defined in A000594.

A023003List(len) = DedekindEta(len, -4)

A023003List(33) |> println # Peter Luschny, Mar 10 2018

CROSSREFS

Cf. 4th column of A144064.

Sequence in context: A278680 A121593 A160527 * A001872 A054443 A281766

Adjacent sequences:  A023000 A023001 A023002 * A023004 A023005 A023006

KEYWORD

nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 09:29 EDT 2019. Contains 328056 sequences. (Running on oeis4.)