login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047494
Numbers that are congruent to {0, 1, 4, 5, 7} mod 8.
1
0, 1, 4, 5, 7, 8, 9, 12, 13, 15, 16, 17, 20, 21, 23, 24, 25, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 44, 45, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 63, 64, 65, 68, 69, 71, 72, 73, 76, 77, 79, 80, 81, 84, 85, 87, 88, 89, 92, 93, 95, 96, 97, 100, 101, 103
OFFSET
1,3
FORMULA
G.f.: x^2*(x^4+2*x^3+x^2+3*x+1)/((x-1)^2*(x^4+x^3+x^2+x+1)). [Colin Barker, Jun 22 2012]
From Wesley Ivan Hurt, Jul 31 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 35 - 2*(n mod 5) + 3*((n+1) mod 5) - 7*((n+2) mod 5) + 3*((n+3) mod 5) + 3*((n+4) mod 5))/25.
a(5k) = 8k-1, a(5k-1) = 8k-3, a(5k-2) = 8k-4, a(5k-3) = 8k-7, a(5k-4) = 8k-8. (End)
MAPLE
A047494:=n->8*floor(n/5)+[(0, 1, 4, 5, 7)][(n mod 5)+1]: seq(A047494(n), n=0..100); # Wesley Ivan Hurt, Jul 31 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 1, 4, 5, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jul 31 2016 *)
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 4, 5, 7, 8}, 80] (* Harvey P. Dale, Jul 02 2021 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 4, 5, 7]]; // Wesley Ivan Hurt, Jul 31 2016
CROSSREFS
Sequence in context: A298874 A266267 A189477 * A080712 A005048 A119642
KEYWORD
nonn,easy
STATUS
approved