login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008389
Coordination sequence for A_7 lattice.
2
1, 56, 812, 5768, 26474, 91112, 256508, 623576, 1356194, 2703512, 5025692, 8823080, 14768810, 23744840, 36881420, 55599992, 81659522, 117206264, 164826956, 227605448, 309182762, 413820584, 546468188, 712832792, 919453346
OFFSET
0,2
LINKS
M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, 1997; Zeit. f. Kristallographie, 212 (1997), 253-256.
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
FORMULA
G.f.: (1+x)*(1+48*x+393*x^2+832*x^3+393*x^4+48*x^5+x^6)/(1-x)^7. - Colin Barker, Sep 26 2012
a(n) = 2 + n^2*(143*n^4 +770*n^2 +707)/30 with n>0, a(0)=1. - Bruno Berselli, Sep 26 2012
E.g.f.: -1 + (1/30)*(60 +1620*x +10530*x^2 +17490*x^3 +10065*x^4 +2145*x^5 +143*x^6)*exp(x). - G. C. Greubel, May 26 2023
MAPLE
1, seq(2 +n^2*(143*n^4 +770*n^2 +707)/30, n=1..50);
MATHEMATICA
Table[n^2*(143*n^4 +770*n^2 +707)/30 +2 -Boole[n==0], {n, 0, 40}] (* G. C. Greubel, May 26 2023 *)
PROG
(Magma) [1] cat [2 +n^2*(143*n^4 +770*n^2 +707)/30: n in [1..40]]; // G. C. Greubel, May 26 2023
(SageMath) [2 +n^2*(143*n^4 +770*n^2 +707)/30 -int(n==0) for n in range(41)] # G. C. Greubel, May 26 2023
CROSSREFS
Row 7 of A103881.
Sequence in context: A285155 A278197 A182866 * A338002 A351410 A219937
KEYWORD
nonn,easy
STATUS
approved