login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006605 Number of modes of connections of 2n points.
(Formerly M2899)
8
1, 1, 3, 11, 46, 207, 979, 4797, 24138, 123998, 647615, 3428493, 18356714, 99229015, 540807165, 2968468275, 16395456762, 91053897066, 508151297602, 2848290555562, 16028132445156, 90516256568235, 512831902620465, 2914112388802779, 16604034506299314 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of paths of semilength n staying weakly within the 1st quadrant starting at (0,0) and ending on the X-axis using steps (1,1), (1,-1) and (1,3). - David Scambler, Jun 21 2013

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

H. N. V. Temperley and D. G. Rogers, A note on Baxter's generalization of the Temperley-Lieb operators, pp. 324-328 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..400

Gi-Sang Cheon, S.-T. Jin, L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Volume 491, 15 February 2016, Pages 123-137.

N. Gabriel, K. Peske, L. Pudwell, S. Tay, Pattern Avoidance in Ternary Trees, J. Int. Seq. 15 (2012) # 12.1.5.

Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.

Simon Plouffe, Approximations of generating functions and a few conjectures, arXiv:0911.4975 [math.NT], 2009, Master Thesis.

L. Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. [N. J. A. Sloane, Jan 03 2013]

FORMULA

Reference gives explicit formula.

G.f.: A(x) = (1/x)*serreverse(x/G(x)) where G(x) is g.f. of A001006 (Motzkin numbers). G.f. satisfies: A(x)^2 = (1/x)*serreverse( x/(1+x+x^2)^2 ). - Paul D. Hanna, Mar 20 2005

G.f. revogf is 1/2*(-x+1+(-(1+x)*(-1+3*x))^(1/2))*x, Simon Plouffe, Master Thesis, UQAM 1992.

a(n) = A026302(n)/(n+1). - Mark van Hoeij, Jul 02 2010

a(n) = 1/(2*n+1)*Sum_{j=0...2*n+1} binomial(j,2*j-2-3*n)*binomial(2*n+1,j). - Vladimir Kruchinin, Dec 24 2010

a(n) ~ sqrt(89 + 277/sqrt(13)) * ((70 + 26*sqrt(13))/27)^n / (9*sqrt(6*Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 15 2013

With interpolated zeros, the o.g.f. = series reversion of x/(1 + x^2 + x^4) = x + x^3 + 3*x^5 + 11*x^7 + 46*x^9 + .... - Peter Bala, Dec 17 2013

Conjecture: 3*n*(3*n+2)*(3*n+1)*a(n) + (-275*n^3 + 475*n^2 - 328*n + 68)*a(n-1) + 2*(2*n-3)*(139*n^2 - 507*n + 398)*a(n-2) + 180*(2*n-5)*(n-2)*(2*n-3)*a(n-3) = 0. - R. J. Mathar, May 30 2014

MAPLE

series(RootOf(x^2*g^4+x*g^2-g+1, g), x=0, 20); # Mark van Hoeij, Nov 16 2011

# second Maple program:

a:= proc(n) option remember; `if`(n<2, 1,

       2*((910*n^4 -1085*n^3  +227*n^2 +92*n -24) *a(n-1)

         +(936*n^4 -2520*n^3 +1710*n^2 +90*n-216) *a(n-2))/

      (3*n *(117*n^3 +36*n^2 -55*n -18)))

    end:

seq(a(n), n=0..30);  # Alois P. Heinz, Aug 07 2012

MATHEMATICA

Table[1/(2*n+1)*Sum[Binomial[j, 2*j-2-3*n]*Binomial[2*n+1, j], {j, 0, 2*n+1}], {n, 0, 20}] (* Vaclav Kotesovec after Vladimir Kruchinin, Aug 15 2013 *)

PROG

(PARI) {a(n)=polcoeff(((1/x)*serreverse(x/(1+x+x^2)^2+x^2*O(x^n)))^(1/2), n)} \\ Paul D. Hanna

CROSSREFS

Cf. A001006, A143926.

Sequence in context: A275757 A291090 A155134 * A306822 A193074 A287891

Adjacent sequences:  A006602 A006603 A006604 * A006606 A006607 A006608

KEYWORD

nonn,changed

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 20 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 15:41 EST 2019. Contains 329106 sequences. (Running on oeis4.)