login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047562
Numbers that are congruent to {3, 4, 5, 6, 7} mod 8.
1
3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55, 59, 60, 61, 62, 63, 67, 68, 69, 70, 71, 75, 76, 77, 78, 79, 83, 84, 85, 86, 87, 91, 92, 93, 94, 95, 99, 100, 101, 102, 103
OFFSET
1,1
FORMULA
From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n>6.
G.f.: x*(x^5 + x^4 + x^3 + x^2 + x + 3)/(x^6 - x^5 - x + 1). (End)
From Wesley Ivan Hurt, Aug 16 2016: (Start)
a(n) = a(n-5) + 8 for n > 5.
a(n) = n + 2 + 3*floor((n-1)/5).
a(n) = (8*n + 7 - 3*((n+4) mod 5))/5.
a(5k) = 8k-1, a(5k-1) = 8k-2, a(5k-2) = 8k-3, a(5k-3) = 8k-4, a(5k-4) = 8k-5. (End)
MAPLE
A047562:=n->8*floor(n/5)+[3, 4, 5, 6, 7][(n mod 5)+1]: seq(A047562(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2016
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {3, 4, 5, 6, 7, 11}, 50] (* G. C. Greubel, May 29 2016 *)
#+{3, 4, 5, 6, 7}&/@(8*Range[0, 20])//Flatten (* Harvey P. Dale, May 25 2020 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [3, 4, 5, 6, 7]]; // Wesley Ivan Hurt, Aug 16 2016
CROSSREFS
Sequence in context: A039056 A378086 A326754 * A354270 A137922 A176984
KEYWORD
nonn,easy
STATUS
approved