This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047562 Numbers that are congruent to {3, 4, 5, 6, 7} mod 8. 1
 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55, 59, 60, 61, 62, 63, 67, 68, 69, 70, 71, 75, 76, 77, 78, 79, 83, 84, 85, 86, 87, 91, 92, 93, 94, 95, 99, 100, 101, 102, 103 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1). FORMULA From Chai Wah Wu, May 29 2016: (Start) a(n) = a(n-1) + a(n-5) - a(n-6) for n>6. G.f.: x*(x^5 + x^4 + x^3 + x^2 + x + 3)/(x^6 - x^5 - x + 1). (End) From Wesley Ivan Hurt, Aug 16 2016: (Start) a(n) = a(n-5) + 8 for n > 5. a(n) = n + 2 + 3*floor((n-1)/5). a(n) = (8*n + 7 - 3*((n+4) mod 5))/5. a(5k) = 8k-1, a(5k-1) = 8k-2, a(5k-2) = 8k-3, a(5k-3) = 8k-4, a(5k-4) = 8k-5. (End) MAPLE A047562:=n->8*floor(n/5)+[3, 4, 5, 6, 7][(n mod 5)+1]: seq(A047562(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2016 MATHEMATICA LinearRecurrence[{1, 0, 0, 0, 1, -1}, {3, 4, 5, 6, 7, 11}, 50] (* G. C. Greubel, May 29 2016 *) PROG (MAGMA) [n : n in [0..150] | n mod 8 in [3, 4, 5, 6, 7]]; // Wesley Ivan Hurt, Aug 16 2016 CROSSREFS Sequence in context: A163078 A050034 A039056 * A137922 A176984 A099562 Adjacent sequences:  A047559 A047560 A047561 * A047563 A047564 A047565 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 10:09 EDT 2019. Contains 321368 sequences. (Running on oeis4.)