login
A140394
Numbers n, satisfying A055231(n+1) - A055231(n) = 1, and with n and n+1 not squarefree.
2
49, 1681, 18490, 23762, 39325, 57121, 182182, 453962, 656914, 843637, 1431125, 1608574, 1609674, 1940449, 2328482, 2948406, 3203050, 3721549, 5606230, 6352825, 8984002, 10000165, 13502254, 19326874, 19740249, 21006589, 26623750, 35558770, 38067925, 46297822
OFFSET
1,1
COMMENTS
There exists an infinite number of numbers that are divisible by a square and satisfy A055231(n+1) - A055231(n) = 1 because the Fermat-Pell equation 2x^2 - y^2 = 1 admits an infinite number of solutions.
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 49, p. 18, Ellipses, Paris 2008.
EXAMPLE
49 is in the sequence because A055231(50) - A055231(49) = A055231(2*5^2) - A055231(7^2) = 2 - 1 = 1;
18490 is in the sequence because A055231(18491) - A055231(18490) = A055231(11*41^2) -A055231(2*5*43^2) = 11 - 10 = 1.
MAPLE
isA013929 := proc(n)
n>3 and not numtheory[issqrfree](n) ;
end proc:
isA140394 := proc(n)
isA013929(n) and isA013929(n+1) and (A055231(n+1) -A055231(n) = 1) ;
end proc:
for n from 1 do
if isA140394(n) then
print(n);
end if;
end do: # R. J. Mathar, Dec 23 2011
MATHEMATICA
rad[n_] := Times @@ First /@ FactorInteger[n]; pow[n_] := Denominator[n / rad[n]^2]; aQ[n_] := !SquareFreeQ[n] && !SquareFreeQ[n + 1] && pow[n + 1] - pow[n] == 1; Select[Range[10^6], aQ] (* Amiram Eldar, Oct 01 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 19 2011
EXTENSIONS
a(24)-a(30) from Amiram Eldar, Oct 01 2019
STATUS
approved