This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055231 Powerfree part of n: product of primes that divide n only once. 40
 1, 2, 3, 1, 5, 6, 7, 1, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 3, 1, 26, 1, 7, 29, 30, 31, 1, 33, 34, 35, 1, 37, 38, 39, 5, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 2, 55, 7, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 1, 73, 74, 3, 19, 77, 78, 79, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The previous name was: Write n = K^2*F where F is squarefree and F = g*f where g = gcd(K,F) and f = F/g; then a(n) = f(n) = F(n)/g(n). Thus gcd(K^2,f) = 1. Differs from A007913; they coincide if and only if g(n) = 1. a(n) is the powerfree part of n; i.e., if n=Product(pi^ei) over all i [prime factorization) then a(n)=Product(pi^ei) over those i with ei=1; if n=b*c^2*d^3 then a(n) is minimum possible value of b. - Henry Bottomley, Sep 01 2000 Also denominator of n/rad(n)^2, where rad is the squarefree kernel of n (A007947), numerator: A062378. - Reinhard Zumkeller, Dec 10 2002 Largest unitary squarefree number dividing n (the unitary squarefree kernel of n). - Steven Finch, Mar 01 2004 LINKS Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe) Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author] FORMULA a(n) = n/A057521(n). Multiplicative with a(p) = p and a(p^e) = 1 for e > 1. - Vladeta Jovovic, Nov 01 2001 Dirichlet g.f.: zeta(s)*Product_{primes p} (1 + p^(1-s) - p^(-s) - p^(1-2s) + p^(-2s)). - R. J. Mathar, Dec 21 2011 a(n) = A007947(n)/A071773(n). - observed by Velin Yanev, Aug 27 2017, confirmed by Antti Karttunen, Nov 28 2017 a(1) = 1; for n > 1, a(n) = A020639(n)^A063524(A067029(n)) * a(A028234(n)). - Antti Karttunen, Nov 28 2017 a(n*m) = a(n)*a(m)/(gcd(n,a(m))*gcd(m,a(n))) for all n and m > 0 (conjectured). - Velin Yanev, Feb 06 2019. [This follows easily from the comment of Vladeta Jovovic. - N. J. A. Sloane, Mar 14 2019] EXAMPLE If n = 15!, A008833(15!) = 30240*30240, A007913(15!) = 1430, g(15!) = 10, a(n) = A007913(15!) = 143 and GCD[30240,143] = 1. 15! = (30240*30240)*1430 = (30240^2)*10*143 = K*K*F = (K^2)*g*f. MAPLE A055231 := proc(n)     a := 1 ;     if n > 1 then         for f in ifactors(n) do             if op(2, f) = 1 then                 a := a*op(1, f) ;             end if;         end do:     end if;     a ; end proc: # R. J. Mathar, Dec 23 2011 MATHEMATICA rad[n_] := Times @@ First /@ FactorInteger[n]; a[n_] := Denominator[n/rad[n]^2]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 20 2013, after Reinhard Zumkeller *) PROG (PARI) A055231(n)={    local(a=1);    f=factor(n) ;    for(i=1, matsize(f),          if( f[i, 2] ==1, a *=  f[i, 1]          )    ) ;    a ; } /* R. J. Mathar, Mar 12 2012 */ (PARI) a(n) = {my(f=factor(n)); for (k=1, #f~, if (f[k, 2] > 1, f[k, 2] = 0); ); factorback(f); } \\ Michel Marcus, Aug 27 2017 (Scheme, with memoization-macro definec) (definec (A055231 n) (if (= 1 n) 1 (* (if (= 1 (A067029 n)) (A020639 n) 1) (A055231 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017 CROSSREFS a(n) = A007913(n)/gcd(A008833(n!), A007913(n!)). Cf. A008833, A007913, A007947, A000188, A057521, A055773 (computed for n!), A056169 (number of prime divisors), A056671 (number of divisors), A092261 (sum of divisors of the n-th term). Sequence in context: A049274 A130508 A182938 * A304328 A304339 A160400 Adjacent sequences:  A055228 A055229 A055230 * A055232 A055233 A055234 KEYWORD nonn,mult AUTHOR Labos Elemer, Jun 21 2000 EXTENSIONS Name field replaced with a simpler description (based on Henry Bottomley's comment) by Antti Karttunen, Nov 28 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 10:45 EST 2019. Contains 329751 sequences. (Running on oeis4.)