

A068781


Lesser of two consecutive numbers each divisible by a square.


24



8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Also numbers m such that mu(m)=mu(m+1)=0, where mu is the Moebiusfunction (A008683); A081221(a(n))>1.  Reinhard Zumkeller, Mar 10 2003
The sequence contains an infinite family of arithmetic progressions like {36a+8}={8,44,80,116,152,188,...} ={4(9a+2)}. {36a+9} provides 2nd nonsquarefree terms. Such AP's can be constructed to any term by solution of a system of linear Diophantine equation.  Labos Elemer, Nov 25 2002
1. 4k^2 + 4k is a member for all k; i.e., 8 times a triangular number is a member. 2. (4k+1) times an odd square  1 is a member. 3. (4k+3) times odd square is a member.  Amarnath Murthy, Apr 24 2003
A261869(a(n)) = 0.  Reinhard Zumkeller, Sep 04 2015


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000


EXAMPLE

44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5.


MATHEMATICA

Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &]


PROG

(Haskell)
a068781 n = a068781_list !! (n1)
a068781_list = filter ((== 0) . a261869) [1..]
 Reinhard Zumkeller, Sep 04 2015


CROSSREFS

Cf. A068780, A068140, A068781, A068782, A068783, A068784, A068785.
Cf. A049535, A077647, A078143, A045882.
Subsequence of A261869.
Sequence in context: A176297 A175496 A048109 * A212861 A038524 A261394
Adjacent sequences: A068778 A068779 A068780 * A068782 A068783 A068784


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, Mar 04 2002


STATUS

approved



