OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
FORMULA
G.f.: x*(1+x+x^2+x^3+x^4+x^5+2*x^6) / ((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (24*n-21-3*cos(n*Pi)-4*sqrt(3)*cos((1+4*n)*Pi/6)-12*sin((1-2*n)*Pi/6))/18.
a(6k) = 8k-2, a(6k-1) = 8k-3, a(6k-2) = 8k-4, a(6k-3) = 8k-5, a(6k-4) = 8k-6, a(6k-5) = 8k-7. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 + log(2)/2 + sqrt(2)*log(3-2*sqrt(2))/16. - Amiram Eldar, Dec 28 2021
MAPLE
A047422:=n->(24*n-21-3*cos(n*Pi)-4*sqrt(3)*cos((1+4*n)*Pi/6)-12*sin((1-2*n)*Pi/6))/18: seq(A047422(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{1, 2, 3, 4, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)
PROG
(Magma) [n : n in [0..100] | n mod 8 in [1..6]]; // Wesley Ivan Hurt, Jun 16 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved