login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005798 Expansion of (theta_2(q)/theta_3(q))^4/16 in powers of q.
(Formerly M4528)
8
0, 1, -8, 44, -192, 718, -2400, 7352, -20992, 56549, -145008, 356388, -844032, 1934534, -4306368, 9337704, -19771392, 40965362, -83207976, 165944732, -325393024, 628092832, -1194744096, 2241688744, -4152367104, 7599231223, -13749863984 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

When multiplied by 16, this is the q-expansion of the automorphic function lambda (see A115977) [see Erdelyi].

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 591.

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 121.

A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 23, Eq. (37).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 591.

A. Kneser, Neue Untersuchung einer Reihe aus der Theorie der elliptischen Funktionen, J. reine u. angew. Math. 157, 1927, 209 - 218, p.213, second formula.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Eric Weisstein's World of Mathematics, Elliptic Lambda Function a section of The World of Mathematics.

FORMULA

Expansion of elliptic lambda / 16 = m / 16 = (k / 4)^2 in powers of the nome q.

Expansion of q * (psi(q) / phi(q))^8 = q * (psi(q^2) / psi(q))^8 = q * (psi(-q) / phi(-q^2))^8 = q * (chi(-q) / chi(-q^2)^2)^8 = q / (chi(q) * chi(-q^2))^8 = q / (chi(-q) * chi(q)^2)^8 = q * (psi(q^2) / phi(q))^4 = q * (f(-q^4) / f(q))^8 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jun 13 2011

Expansion of eta(q)^8 * eta(q^4)^16 / eta(q^2)^24 in powers of q.

Euler transform of period 4 sequence [-8, 16, -8, 0, ...].

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v + 16*u*v - 32*u^2*v + 256*(u*v)^2. - Michael Somos, Mar 19 2004

G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1 / 16) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128692. - Michael Somos, May 10 2014

G.f.: q * Product( (1 + q^(2*n)) / (1 + q^(2*n - 1)), n=1..inf )^8.

a(n) ~ (-1)^(n+1) * exp(2*Pi*sqrt(n))/(512*n^(3/4)). - Vaclav Kotesovec, Jul 10 2016

EXAMPLE

G.f. = q - 8*q^2 + 44*q^3 - 192*q^4 + 718*q^5 - 2400*q^6 + 7352*q^7 - 20992*q^8 + ...

MAPLE

with (numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add (add (d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: aa:=etr (n-> [ -8, 16, -8, 0] [modp(n-1, 4)+1]): a:= n->aa(n-1): seq (a(n), n=0..26);  # Alois P. Heinz, Sep 08 2008

MATHEMATICA

a[ n_] := SeriesCoefficient[ InverseEllipticNomeQ[ x] / 16, {x, 0, n}]; (* Michael Somos, Jun 13 2011 *)

a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, 0, q^(1/2)])^8, {q, 0, n}]; (* Michael Somos, May 10 2014 *)

a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^4] / QPochhammer[ -q])^8, {q, 0, n}]; (* Michael Somos, May 10 2014 *)

a[ n_] := SeriesCoefficient[ q (Product[ 1 - q^k, {k, 4, n - 1, 4}] / Product[ 1 - (-q)^k, {k, n - 1}])^8, {q, 0, n}]; (* Michael Somos, May 10 2014 *)

etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; aa = etr[Function[{n}, {-8, 16, -8, 0}[[Mod[n-1, 4]+1]]]]; a[n_] := aa[n-1]; Table[a[n], {n, 0, 26}] (* Jean-Fran├žois Alcover, Mar 05 2015, after Alois P. Heinz *)

PROG

(PARI) {a(n) = my(A, m); if( n<1, 0, m=1; A = x + O(x^2); while( m<n, m*=2; A = sqrt( subst(A, x, x^2)); A /= (1 + 4*A)^2); polcoeff(A, n))};

(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^8, n))}; /* Michael Somos, Jul 16 2005 */

CROSSREFS

If initial 0 is omitted and sequence begins with a(0) = 1, then this is the convolution of A001938 with itself. G.f.s are related by a(x)=x*A001938(x)^2. Reversion of A005797.

Cf. A007248, A029845, A115977, A128692.

Sequence in context: A250285 A059596 A181358 * A092877 A160521 A277958

Adjacent sequences:  A005795 A005796 A005797 * A005799 A005800 A005801

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Definition simplified by N. J. A. Sloane, Sep 25 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 12:57 EST 2019. Contains 320327 sequences. (Running on oeis4.)