login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029845 Expansion of 16/lambda(z) in powers of nome q = exp(Pi*i*z). 10
1, 8, 20, 0, -62, 0, 216, 0, -641, 0, 1636, 0, -3778, 0, 8248, 0, -17277, 0, 34664, 0, -66878, 0, 125312, 0, -229252, 0, 409676, 0, -716420, 0, 1230328, 0, -2079227, 0, 3460416, 0, -5677816, 0, 9198424, 0, -14729608, 0, 23328520, 0, -36567242, 0, 56774712, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

COMMENTS

Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).

LINKS

Alois P. Heinz, Table of n, a(n) for n = -1..1000

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Eric Weisstein's World of Mathematics, Elliptic Lambda Function

FORMULA

Expansion of (eta(q^2)^3/(eta(q)*eta(q^4)^2))^8 in powers of q. - Michael Somos, Nov 14 2006

Expansion of (chi(q)*chi(-q^2))^8/q in powers of q where chi() is a Ramanujan theta function.

Euler transform of period 4 sequence [ 8, -16, 8, 0, ...]. - Michael Somos, Nov 14 2006

G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v) = 256 -v*(32-16*u+u^2) +v^2 . - Michael Somos, Nov 14 2006

G.f.: 1/x*(Product_{k>0} (1+q^(2k-1))/(1+q^(2k)))^8.

EXAMPLE

1/q + 8 + 20*q - 62*q^3 + 216*q^5 - 641*q^7 + 1636*q^9 - 3778*q^11 + ...

MATHEMATICA

QP = QPochhammer; s = 16*q + (QP[q]/QP[q^4])^8 + O[q]^50; CoefficientList[s, q] (* Jean-Fran├žois Alcover, Nov 27 2015, adapted from PARI *)

PROG

(PARI) {a(n)=local(A); if(n<-1, 0, n++; A=x*O(x^n); polcoeff( 16*x+(eta(x+A)/eta(x^4+A))^8, n))} /* Michael Somos, Nov 14 2006 */

CROSSREFS

Cf. A007248(n) = a(2n-1). A124972(n) = a(n) except at n=0.

Cf. A000122, A000700, A010054, A121373.

Sequence in context: A177124 A153704 * A124972 A161969 A000731 A034433

Adjacent sequences:  A029842 A029843 A029844 * A029846 A029847 A029848

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 15:01 EST 2017. Contains 295939 sequences.