OFFSET
-1,2
COMMENTS
LINKS
Seiichi Manyama, Table of n, a(n) for n = -1..10000 (terms -1..1000 from Alois P. Heinz)
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Eric Weisstein's World of Mathematics, Elliptic Lambda Function
FORMULA
Expansion of (eta(q^2)^3/(eta(q)*eta(q^4)^2))^8 in powers of q. - Michael Somos, Nov 14 2006
Expansion of (chi(q)*chi(-q^2))^8/q in powers of q where chi() is a Ramanujan theta function.
Euler transform of period 4 sequence [ 8, -16, 8, 0, ...]. - Michael Somos, Nov 14 2006
G.f. A(x) satisfies: 0=f(A(x), A(x^2)) where f(u, v) = 256 - v*(32-16*u+u^2) + v^2. - Michael Somos, Nov 14 2006
G.f.: 1/q*(Product_{k>0} (1+q^(2k-1))/(1+q^(2k)))^8.
EXAMPLE
1/q + 8 + 20*q - 62*q^3 + 216*q^5 - 641*q^7 + 1636*q^9 - 3778*q^11 + ...
MATHEMATICA
QP = QPochhammer; s = 16*q + (QP[q]/QP[q^4])^8 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
PROG
(PARI) {a(n)=local(A); if(n<-1, 0, n++; A=x*O(x^n); polcoeff( 16*x+(eta(x+A)/eta(x^4+A))^8, n))} /* Michael Somos, Nov 14 2006 */
CROSSREFS
KEYWORD
sign,easy,changed
AUTHOR
STATUS
approved