This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047234 Numbers that are congruent to {0, 1, 4} mod 6. 8
 0, 1, 4, 6, 7, 10, 12, 13, 16, 18, 19, 22, 24, 25, 28, 30, 31, 34, 36, 37, 40, 42, 43, 46, 48, 49, 52, 54, 55, 58, 60, 61, 64, 66, 67, 70, 72, 73, 76, 78, 79, 82, 84, 85, 88, 90, 91, 94, 96, 97, 100, 102, 103, 106, 108, 109, 112, 114, 115, 118, 120, 121, 124 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). FORMULA Equals partial sums of (0, 1, 3, 2, 1, 3, 2, 1, 3, 2, ...). - Gary W. Adamson, Jun 19 2008 G.f.: x^2*(1+x)*(2*x+1)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011 From Wesley Ivan Hurt, Jun 14 2016: (Start) a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. a(n) = (6*n-7+cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3. a(3k) = 6k-2, a(3k-1) = 6k-5, a(3k-2) = 6k-6. (End) MAPLE A047234:=n->(6*n-7+cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3: seq(A047234(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016 MATHEMATICA Select[Range[0, 200], Mod[#, 6] == 0 || Mod[#, 6] == 1 || Mod[#, 6] == 4 &] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *) LinearRecurrence[{1, 0, 1, -1}, {0, 1, 4, 6}, 100] (* Vincenzo Librandi, Jun 15 2016 *) PROG (PARI) a(n)=(n-1)\3*6+[4, 0, 1][n%3+1] \\ Charles R Greathouse IV, Jun 11 2015 (MAGMA) [n : n in [0..150] | n mod 6 in [0, 1, 4]]; // Wesley Ivan Hurt, Jun 14 2016 CROSSREFS Cf. A047240, A047242. Sequence in context: A272632 A229744 A191920 * A089532 A285254 A103401 Adjacent sequences:  A047231 A047232 A047233 * A047235 A047236 A047237 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.