login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047234 Numbers that are congruent to {0, 1, 4} mod 6. 8
0, 1, 4, 6, 7, 10, 12, 13, 16, 18, 19, 22, 24, 25, 28, 30, 31, 34, 36, 37, 40, 42, 43, 46, 48, 49, 52, 54, 55, 58, 60, 61, 64, 66, 67, 70, 72, 73, 76, 78, 79, 82, 84, 85, 88, 90, 91, 94, 96, 97, 100, 102, 103, 106, 108, 109, 112, 114, 115, 118, 120, 121, 124 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).

FORMULA

Equals partial sums of (0, 1, 3, 2, 1, 3, 2, 1, 3, 2, ...). - Gary W. Adamson, Jun 19 2008

G.f.: x^2*(1+x)*(2*x+1)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011

From Wesley Ivan Hurt, Jun 14 2016: (Start)

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.

a(n) = (6*n-7+cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3.

a(3k) = 6k-2, a(3k-1) = 6k-5, a(3k-2) = 6k-6. (End)

MAPLE

A047234:=n->(6*n-7+cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3: seq(A047234(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016

MATHEMATICA

Select[Range[0, 200], Mod[#, 6] == 0 || Mod[#, 6] == 1 || Mod[#, 6] == 4 &] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *)

LinearRecurrence[{1, 0, 1, -1}, {0, 1, 4, 6}, 100] (* Vincenzo Librandi, Jun 15 2016 *)

PROG

(PARI) a(n)=(n-1)\3*6+[4, 0, 1][n%3+1] \\ Charles R Greathouse IV, Jun 11 2015

(MAGMA) [n : n in [0..150] | n mod 6 in [0, 1, 4]]; // Wesley Ivan Hurt, Jun 14 2016

CROSSREFS

Cf. A047240, A047242.

Sequence in context: A272632 A229744 A191920 * A089532 A103401 A277572

Adjacent sequences:  A047231 A047232 A047233 * A047235 A047236 A047237

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 21:14 EST 2016. Contains 278745 sequences.