login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174396
Numbers congruent to {1,4,5,8} mod 9.
2
1, 4, 5, 8, 10, 13, 14, 17, 19, 22, 23, 26, 28, 31, 32, 35, 37, 40, 41, 44, 46, 49, 50, 53, 55, 58, 59, 62, 64, 67, 68, 71, 73, 76, 77, 80, 82, 85, 86, 89, 91, 94, 95, 98, 100, 103, 104, 107, 109, 112, 113, 116, 118, 121, 122, 125, 127, 130, 131, 134, 136
OFFSET
1,2
FORMULA
a(n) = 3*(n-1-floor((n-1)/4)) + (-1)^floor((n-1)/2).
From Wesley Ivan Hurt, Oct 17 2015: (Start)
G.f.: x*(1+3*x+x^2+3*x^3+x^4)/((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (18*n-9+3*(-1)^n-2*(-1)^((2*n+1-(-1)^n)/4))/8. (End)
E.g.f.: (1/8)*(2*sin(x) - 2*cos(x) + 18*x*exp(x) + 3*exp(-x) - 9*exp(x) + 8). - G. C. Greubel, Oct 18 2015
MAPLE
seq(3*(n - floor(n/4)) + (-1)^floor(n/2), n=0..100);
MATHEMATICA
CoefficientList[Series[(1 + 3 x + x^2 + 3 x^3 + x^4)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Oct 17 2015 *)
RecurrenceTable[{a[1] == 1, a[2] == 4, a[3] == 5, a[4] == 8, a[5] == 10 , a[n+5] == a[n+4] + a[n+1] - a[n] }, a, {n, 1, 100}] (* G. C. Greubel, Oct 18 2015 *)
PROG
(Magma) [(18*n-9+3*(-1)^n-2*(-1)^((2*n+1-(-1)^n) div 4))/8 : n in [1..100]]; // Wesley Ivan Hurt, Oct 17 2015
CROSSREFS
Sequence in context: A292658 A304108 A214026 * A033157 A310574 A059659
KEYWORD
nonn,easy
AUTHOR
Gary Detlefs, Mar 18 2010
EXTENSIONS
Formula corrected by Gary Detlefs, Mar 19 2010
STATUS
approved