login
A001916
Primes p such that the congruence 2^x = 5 (mod p) is solvable.
(Formerly M4772 N2038)
3
2, 3, 11, 13, 19, 29, 37, 41, 53, 59, 61, 67, 71, 79, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 191, 197, 199, 211, 227, 239, 251, 269, 271, 293, 311, 317, 347, 349, 359, 373, 379, 389, 401, 409, 419, 421, 443, 449, 461, 467, 479, 491, 509, 521, 523, 541, 547, 557
OFFSET
1,1
REFERENCES
M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 64.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MATHEMATICA
Select[Prime[Range[120]], MemberQ[Table[Mod[2^x-5, #], {x, 0, #}], 0]&] (* Jean-François Alcover, Aug 29 2011 *)
CROSSREFS
Cf. A001915.
Sequence in context: A020599 A167525 A038967 * A089151 A115669 A036956
KEYWORD
nonn
EXTENSIONS
Better description and more terms from David W. Wilson, Dec 12 2000
Description corrected by Joe K. Crump (joecr(AT)carolina.rr.com), Jan 17 2001
STATUS
approved