login
A014967
Continued fraction for Conway's constant.
2
1, 3, 3, 2, 2, 54, 5, 2, 1, 16, 1, 30, 1, 1, 1, 2, 2, 1, 14, 1, 6, 24, 107, 5, 1, 1, 26, 2, 41, 10, 1, 1, 5, 17, 5, 1, 8, 3, 94, 38, 1, 18, 1, 1, 2, 1, 64, 18, 1, 6, 1, 2, 2, 1, 23, 1, 4, 4, 1, 1, 3, 4, 1, 10, 1, 28, 4, 12, 1, 1238, 13, 1, 1, 58, 1, 2, 4, 1, 3, 7, 1, 3, 1, 4, 1, 1, 1, 1, 1, 1, 100
OFFSET
0,2
REFERENCES
J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.
LINKS
EXAMPLE
1.303577269034296391257099112... = 1 + 1/(3 + 1/(3 + 1/(2 + 1/(2 + ...)))) [From Harry J. Smith, May 12 2009]
MATHEMATICA
terms = 201; ContinuedFraction[x /. FindRoot[x^71 - x^69 - 2*x^68 - x^67 + 2*x^66 + 2*x^65 + x^64 - x^63 - x^62 - x^61 - x^60 - x^59 + 2*x^58 + 5*x^57 + 3*x^56 - 2*x^55 - 10*x^54 - 3*x^53 - 2*x^52 + 6*x^51 + 6*x^50 + x^49 + 9*x^48 - 3*x^47 - 7*x^46 - 8*x^45 - 8*x^44 + 10*x^43 + 6*x^42 + 8*x^41 - 5*x^40 - 12*x^39 + 7*x^38 - 7*x^37 + 7*x^36 + x^35 - 3*x^34 + 10*x^33 + x^32 - 6*x^31 - 2*x^30 - 10*x^29 - 3*x^28 + 2*x^27 + 9*x^26 - 3*x^25 + 14*x^24 - 8*x^23 - 7*x^21 + 9*x^20 + 3*x^19 - 4*x^18 - 10*x^17 - 7*x^16 + 12*x^15 + 7*x^14 + 2*x^13 - 12*x^12 - 4* x^11 - 2*x^10 + 5*x^9 + x^7 - 7*x^6 + 7*x^5 - 4*x^4 + 12*x^3 - 6*x^2 + 3*x - 6, {x, 1.3}, WorkingPrecision -> 1.3*terms], terms]
PROG
Contribution from Harry J. Smith, May 15 2009: (Start)
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=NULL; r=solve(x=1, 2, \
x^71-x^69-2*x^68-x^67+2*x^66+2*x^65+x^64-x^63-x^62-x^61-x^60\
-x^59+2*x^58+5*x^57+3*x^56-2*x^55-10*x^54-3*x^53-2*x^52+6*x^51\
+6*x^50+x^49+9*x^48-3*x^47-7*x^46-8*x^45-8*x^44+10*x^43+6*x^42\
+8*x^41-5*x^40-12*x^39+7*x^38-7*x^37+7*x^36+x^35-3*x^34+10*x^33\
+x^32-6*x^31-2*x^30-10*x^29-3*x^28+2*x^27+9*x^26-3*x^25+14*x^24\
-8*x^23-7*x^21+9*x^20+3*x^19-4*x^18-10*x^17-7*x^16+12*x^15\
+7*x^14+2*x^13-12*x^12-4*x^11-2*x^10+5*x^9+x^7-7*x^6+7*x^5\
-4*x^4+12*x^3-6*x^2+3*x-6); c=contfrac(r); for (n=1, 20001, write("b014967.txt", n-1, " ", c[n])); } (End)
CROSSREFS
Cf. A005150, A014715, A014715 (decimal expansion).
Sequence in context: A309569 A356528 A292600 * A210851 A120992 A228483
KEYWORD
cofr,nonn
EXTENSIONS
More terms from Hans Havermann, Feb 15 2001
Deleted old PARI program Harry J. Smith, May 19 2009
STATUS
approved