login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123932 a(0)=1, a(n)=4 for n>0. 5
1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Continued fraction for sqrt(5)-1.

a(n) = number of permutations of length n+3 having only one ascent such that the first element of the permutation is 3. - Ran Pan, Apr 20 2015

Also, decimal expansion of 13/90. - Bruno Berselli, Apr 24 2015

LINKS

Table of n, a(n) for n=0..104.

Index entries for linear recurrences with constant coefficients, signature (1).

FORMULA

G.f.: (1 + 3*x) / (1 - x).

a(n) = 4 - 3*0^n .

a(n) = 4^n mod 12. - Zerinvary Lajos, Nov 25 2009

MATHEMATICA

ContinuedFraction[Sqrt[5] - 1, 120] (* Michael De Vlieger, Apr 20 2015 *)

PROG

(PARI) a(n)=(n>=0)+3*(n>0) \\ Jaume Oliver Lafont, Mar 26 2009

(Sage) [power_mod(4, n, 12) for n in xrange(0, 84)] # Zerinvary Lajos, Nov 25 2009

(MAGMA) [4^n mod 12: n in [0..40]]; // Vincenzo Librandi, Apr 23 2015

(Maxima) makelist(if n=0 then 1 else 4, n, 0, 100); /* Bruno Berselli, Apr 24 2015 */

CROSSREFS

Sequence in context: A088848 A088849 A251539 * A010709 A138908 A032564

Adjacent sequences:  A123929 A123930 A123931 * A123933 A123934 A123935

KEYWORD

nonn,cofr,easy,changed

AUTHOR

Philippe Deléham, Nov 28 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 2 04:15 EDT 2015. Contains 260189 sequences.