login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047238 Numbers that are congruent to {0, 2} mod 6. 13
0, 2, 6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 36, 38, 42, 44, 48, 50, 54, 56, 60, 62, 66, 68, 72, 74, 78, 80, 84, 86, 90, 92, 96, 98, 102, 104, 108, 110, 114, 116, 120, 122, 126, 128, 132, 134, 138, 140, 144, 146, 150, 152, 156, 158, 162 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Complement of A047251, or "Polyrhythmic Sequence" P(2,3); the present sequence represents where the "rests" occur in a "3 against 2" polyrhythm. (See A267027 for definition and description). - Bob Selcoe, Jan 12 2016

LINKS

B. Berselli, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

From Bruno Berselli, Jun 24 2010: (Start)

G.f.: 2*x*(1+2*x)/((1+x)*(1-x)^2).

a(n) = a(n-1) + a(n-2) - a(n-3), a(0)=0, a(1)=2, a(2)=6.

a(n) = (6*n - (-1)^n-7)/2.

a(n) = 2*A032766(n-1). (End)

a(n) = 6*n - a(n-1) - 10 (with a(1)=0). - Vincenzo Librandi, Aug 05 2010

a(n+1) = Sum_{k>=0} A030308(n,k)*A111286(k+2). - Philippe Deléham, Oct 17 2011

a(n) = 2*floor(3*n/2). - Enrique Pérez Herrero, Jul 04 2012

MATHEMATICA

Select[Range[0, 200], MemberQ[{0, 2}, Mod[#, 6]]&] (* or *) LinearRecurrence[ {1, 1, -1}, {0, 2, 6}, 70] (* Harvey P. Dale, Jun 15 2011 *)

PROG

(PARI) forstep(n=0, 200, [2, 4], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011

(MAGMA) [n: n in [0..200]|n mod 6 in {0, 2}]; // Vincenzo Librandi, Jan 12 2016

CROSSREFS

Cf. A047270 [(6*n-(-1)^n-1)/2], A047235 [(6*n-(-1)^n-3)/2], A047241 [(6*n-(-1)^n-5)/2].

Cf. A047251, A267027.

Sequence in context: A056906 A257056 A209249 * A189933 A229488 A307699

Adjacent sequences:  A047235 A047236 A047237 * A047239 A047240 A047241

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 7 04:20 EDT 2020. Contains 333292 sequences. (Running on oeis4.)